Skip to main content
Log in

Phytotoxic effects of volatile organic compounds in soil water taken from a Eucalyptus urophylla plantation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Volatile organic compounds (VOCs) released into the air from eucalyptus have putative roles in chemical communications. But the types and concentrations released in nature, as well as the ecological functions of VOCs in soil water, have not been adequately investigated to date.

Methods

We developed some effective methods for the extraction of VOCs released by root exudation, foliage and leaf litter leaching, and leaf litter decomposition, into water extracts in the laboratory or from field soil around Eucalyptus urophylla. The VOCs were determined by GC-MS. Lolium multiflorum Lam. (annual ryegrass) and Bidens pilosa (cobbler’s pegs) were selected to test the phytotoxic effects of VOCs in soil water released from E. urophylla grown under natural conditions.

Results

Fourteen VOCs in soil water, released by foliage and leaf litter leaching and leaf litter decomposition, were identified and quantified. But we did not identify any VOCs from root exudates. When the concentrations of VOCs were reconstituted to mimic the soil conditions, the laboratory bioassays showed that seed germination and seedling growth of the tested plants were significantly inhibited.

Conclusions

VOCs in soil water were phytotoxic when they had been released by foliage and leaf litter leaching and leaf litter decomposition from E. urophylla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abrahim D, Braguini WL, Kelmer-Bracht AM, Ishii-Iwamoto EL (2000) Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J Chem Ecol 26:611–624

    Google Scholar 

  • Ahmed R, Rafiqul Hoque ATM, Hossain MK (2008) Allelopathic effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops. J Forest Res 19:19–24

    Article  Google Scholar 

  • Andrew RL, Keszei A, Foley WJ (2013) Intensive sampling identifies previously unknown chemotypes, population divergence and biosynthetic connections among terpenoids in Eucalyptus tricarpa. Phytochemistry 94:148–158

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Shiojiri K, Karban R (2010) Acquired immunity to herbivory and allelopathy caused by airborne plant emissions. Phytochemistry 71:1642–1649

    Article  PubMed  CAS  Google Scholar 

  • Armirante F, De Falco E, De Feo V, De Martino L, Mancini E, Quaranta E (2006) Allelopathic activity of essential oils from Mediterranean Labiatae. Acta Horticult 723:347–352

    Google Scholar 

  • Babu RC, Kandasamy OS (1997) Allelopathic effect of Eucalyptus globulus Lahill. on Cyperus rotundus L. and Cynodon dactylon L. Pers. J Agron Crop Sci 179:123–126

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bajwa R, Nazi I (2005) Allelopathic effects of Eucalyptus citriodora on growth, nodulation and AM colonization of Vigna radiata (L.) Wilczek. Allelopathy J 15:237–246

    Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bisio A, Damonte G, Fraternale D, Giacomelli E, Salis A, Romussi G, Cafaggi S, Ricci D, Tommasi ND (2011) Phytotoxic clerodane diterpenes from Salvia miniata Fernald (Lamiaceae). Phytochemistry 72:265–275

    Article  PubMed  CAS  Google Scholar 

  • Blair AC, Hanson BD, Brunk GR, Marrs RA, Westra P, Nissen SJ, Hufbauer RA (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol Lett 8:1039–1047

    Article  Google Scholar 

  • Börjesson E, Torstensson L (1999) New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil. J Chromatogr A 886:207–216

    Article  Google Scholar 

  • Button DK (1984) Evidence for a terpene-based food chain in the Gulf of Alaska. Appl Environ Microbiol (ACE) 48:1004–1011

    CAS  Google Scholar 

  • Calvert JG (1994) Chemistry for the 21st century. The Chemistry of the atmosphere: its impact on global change. Blackwell scientific publications, Oxford

  • Demeestere K, Dewulf J, Witte BD (2007) Langenhove Herman Van. Sample preparation for the analysis of volatile organic compounds in air and water matrices. J Chromatogr A 115:130–144

    Article  CAS  Google Scholar 

  • Dudai N, Ben-Ami M, Chaimovich R, Chaimovitsh D (2004) Essential oils as allelopathic agents: bioconversion of monoterpenes by germinating wheat seeds. Acta Horticult 629:505–508

    CAS  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. Forest Ecol Manag 233:211–230

    Article  Google Scholar 

  • Fulton D, Gillespie T, Fuentes J, Wang D (1998) Volatile organic compound emissions from young black spruce trees. Agric For Meteorol 90:247–255

    Article  Google Scholar 

  • Geron CD, Arnts RR (2010) Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana. Atmos Environ 44:4240–4251

    Article  CAS  Google Scholar 

  • Geron C, Owen S, Guenther A, Greenberg J, Rasmussen R, Bai JH, Li QJ, Baker B (2006) Volatile organic compounds from vegetation in southern Yunnan Province, China: emission rates and some potential regional implications. Atmos Environ 40:1759–1773

    Article  CAS  Google Scholar 

  • Guenther AB, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klingler L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compounds emissions. J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  • Hao ZP, Wang Q, Christie P, Li XL (2007) Allelopathic potential of watermelon tissues and root exudates. Sci Hortic 112:315–320

    Article  CAS  Google Scholar 

  • Harborne JB (1998) Phytochemical Methods, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Haugland E, Brandsaeter LO (1996) Experiments on bioassay sensitivity in the study of allelopathy. J Chem Ecol 22:1845–1859

    Article  PubMed  CAS  Google Scholar 

  • He CR, Murray F, Lyons T (2000) Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia. Atmos Environ 34:645–655

    Article  CAS  Google Scholar 

  • Hilli S, Starka S, Deromea J (2010) Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Appl Soil Ecol 46:200–208

    Article  Google Scholar 

  • Inderjit, Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238

    Article  Google Scholar 

  • Inderjit, Weiner J (2001) Plant allelochemical interferenceor soil chemical ecology? Perspect Plant Ecol 4:3–12

    Article  Google Scholar 

  • Inderjit, Weston LA (2000) Are laboratory biassays for allelopathy suitable for prediction of field responses? J Chem Ecol 26:2111–2118

    Article  CAS  Google Scholar 

  • Inderjit, Evans H, Crocoll C, Bajpai D, Kaur R, Feng YL, Silva C, Carreón JT, Valiente-banuet A, Gershenzon J, Callaway RM (2011a) Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92:316–324

    Article  PubMed  CAS  Google Scholar 

  • Inderjit, Wardle DA, Karban R, Callaway RM (2011b) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662

    Article  PubMed  CAS  Google Scholar 

  • Kalinova J, Vrchotova N, Triska J (2007) Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench). J Agric Food Chem 55:6453–6459

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Ungar IA (1984) The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. Am J Bot 71:481–489

    Article  Google Scholar 

  • Kohli RK, Singh D (1991) Allelopathic impact of volatile components from Eucalyptus on crop plants. Biol Plant 33:475–483

    Article  CAS  Google Scholar 

  • Kuráň P, Soják L (1996) Environmental analysis of volatile organic compounds in water and sediment by gas chromatography. J Chromatogr A 733:119–141

    Article  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:223–1280

    Article  Google Scholar 

  • Lin R, Chen YL, Shi T, Chen FH, Zhang ZQ, Chen YQ, Hu QM, Huang XL (1979) Flora of China, vol 75 (Compositae). Science Press, Beijing

    Google Scholar 

  • Lin C, Owen SM, Peñuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960

    Article  CAS  Google Scholar 

  • Liu L, Zhu TP, Chen WL, Wu ZL, Lu SL (2002) Flora of China, vol 9, Gramineae. Sceince Press, Beijing

    Google Scholar 

  • López ML, Bonzani NE, Zygadlo JA (2009) Allelopathic potential of Tagetes minuta terpenes by a chemical, anatomical and phytotoxic approach. Biochem Syst Ecol 36:882–890

    Article  CAS  Google Scholar 

  • Macías FA, Oliveiros-Bastidas A, Marín D, Carrera C, Chinchilla N, Molinillo JMG (2008) Plant biocommunicators: their phytotoxicity, degradation studies and potencial use as herbicides models. Phytochem Rev 7:179–194

    Article  CAS  Google Scholar 

  • Muller WH (1965) Volatile materials produced by Salvia leucophylla: effects on seedling growth and soil bacteria. Bot Gaz 126:195–200

    Article  CAS  Google Scholar 

  • Muller CH, Muller WH, Haines BL (1964) Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473

    Article  PubMed  CAS  Google Scholar 

  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203

    Google Scholar 

  • Orihara Y, Furaya T (1994) Biotransformation of 1,8-cineole by cultured cells of Eucalyptus perriniana. Phytochemistry 36:641–644

    Article  Google Scholar 

  • Pagula FP, Baser KHC, Kurkcuoglu M (2000) Essential oil composition of Eucalyptus camaldulensis Dehn. from Mozambique. J Essent Oil Res 12:333–335

    Article  CAS  Google Scholar 

  • Qiu X, Yu S, Wang Y, Fang B, Cai C, Liu S (2010) Identification and allelopathic effect of 1,8-cineole from Eucalyptus urophylla on lettuce. Allelopathy J 26:255–264

    Google Scholar 

  • Reigosa MJ, Pazos-Malvido E (2007) Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J Chem Ecol 33:1456–1466

    Article  PubMed  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic, New York

    Google Scholar 

  • Rivoal A, Fernandez C, Lavoir A-V, Oliver R, Lecareux C, Greff S, Roche P, Vila B (2010) Eviromental control of terpene emissions from Cistus monspelensis L. in natual Mediterranean shrublands. Chemosphere 78:942–949

    Article  PubMed  CAS  Google Scholar 

  • Romagni JG, Allen SN, Dayan FE (2000) Allelopahthic effects of volatile cineoles on two weedy plant species. J Chem Ecol 26:303–313

    Article  CAS  Google Scholar 

  • Shi SJ, O’Callaghan M, Jones EE, Richardson AE, Walter C, Stewart A, Condron L (2012) Investigation of organic anions in tree root exudates and rhizosphere microbial communities using in situ and destructive sampling techniques. Plant Soil 359:159–163

    Article  CAS  Google Scholar 

  • Singh NB, Singh R (2003) Effect of leaf leachate of eucalyptus on germination, growth and metabolism of greengram, blackgram and peanut. Allelopathy J 11:43–51

    Google Scholar 

  • Singh D, Kohl RK, Saxena DB (1991) Effect of eucalyptus oil on germination and growth of Phaseolus aureus Roxb. Plant Soil 137:223–227

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur S, Ramezani H, Kohli RK (2002) Comparative phytotoxcity of four monoterpenens against Cassia occidentalis. Ann Appl Biol 141:111–116

    Article  CAS  Google Scholar 

  • Tang CS, Young CC (1982) Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta Limpograss (Hemarthria altissima). Plant Physiol 69:155–160

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tang CS, Cai WF, Kohl K, Nishimoto RK (1995) Plant stress and allelopathy. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy, Amer Chem Soc Symp Ser 582, American Chemical Society, Washington DC

  • Timson J (1965) New method of recording germination data. Nature 207:216–217

    Article  Google Scholar 

  • Verdeguer M, Blázquez MA, Boira H (2009) Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochem Syst Ecol 37:362–369

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Gallet C, Zackrisson O (1998) An ecosystem level perspective of allelopathy. Biol Rev 73:305–319

    Article  Google Scholar 

  • Weast RC (1989) CRC handbook of physics and chemistry, 70th edn. CRC Press, Boca Raton

    Google Scholar 

  • Weidenhamer JD, Macias FA, Fischer NH, Williamson GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807

    Article  PubMed  CAS  Google Scholar 

  • White CS (1994) Monoterpenes: their effects on ecosystem nutrient cycling. J Chem Ecol 20:1381–1406

    Google Scholar 

  • Winters AJ, Adams MA, Bleby TM, Rennenberg H, Steigner D, Steinbrecher R, Kreuzwieser J (2009) Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia. Atmos Environ 43:3035–3043

    Article  CAS  Google Scholar 

  • Zhang C, Fu S (2010) Allelopathic effects of leaf litter and live roots exudates of Eucalyptus species on crops. Allelopathy J 26:91–100

    Google Scholar 

  • Zhang H, Guan DS, Song MW (2012) Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. Forest Ecol Manag 277:90–97

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge helpful comments from Dr. George Li from the University of Sydney. We thank anonymous referees and the editor for their insightful comments that further improved our manuscript. We also thank Chaojun Chu, Hecong Wang, Baoyu Chen, Kangning Zhao, and Dongguan Botanical Garden for the assistance in the field works. This work was supported by the National Natural Science Foundation of China (nos. 31361140363 and 30970468), the Science Foundation of the State Key Laboratory of Biocontrol, and Zhang-Hongda Science Foundation, Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixiao Yu.

Additional information

Responsible Editor: Inderjit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Song, Q., Wang, Y. et al. Phytotoxic effects of volatile organic compounds in soil water taken from a Eucalyptus urophylla plantation. Plant Soil 377, 203–215 (2014). https://doi.org/10.1007/s11104-013-1989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1989-1

Keywords