Advertisement

Plant and Soil

, Volume 377, Issue 1–2, pp 383–394 | Cite as

Phosphorus uptake and use efficiency of diverse West and Central African sorghum genotypes under field conditions in Mali

  • Willmar L. Leiser
  • H. Frederick W. RattundeEmail author
  • Eva Weltzien
  • Bettina I. G. Haussmann
Regular Article

Abstract

Aims

Sorghum [Sorghum bicolor (L.) Moench], a staple crop in West and Central Africa (WCA), is mostly cultivated on soils with low phosphorus (P) availability and thus adaptation to those conditions is vital for food security. Assessment of genotypic variation of WCA sorghum for P uptake and P use efficiency is undertaken to understand the diversity available and opportunities for its use.

Method

We assessed mature plant yield, P uptake and P use efficiency traits of 70 diverse WCA sorghum genotypes under –P (no P fertilization) and + P field conditions in Mali in 2010, to discover differences among all genotypes tested and between and within specific genotype groups.

Results

Large significant genotypic variation for P uptake and P use efficiency traits were observed for all genotypes among and within landrace and researcher bred pools under –P conditions. P uptake traits had a larger genotypic variation than P use efficiency traits. Landrace genotypes showed generally higher P uptake and grain P concentration while formally bred genotypes exhibited a higher P use efficiency. Photoperiod sensitivity was related to higher P uptake.

Conclusion

Genotypic selection for P uptake and P use efficiency traits to improve adaptation to low P soils is possible in sorghum. Use and further study of WCA sorghums for adaptation to low P availability is appropriate as this germplasm shows large variation for P uptake and use efficiency and higher levels of P use efficiency than other important cereals.

Keywords

Sorghum Phosphorus efficiency Genetic diversity Plant breeding 

Notes

Acknowledgments

The staff of the Sorghum Breeding program at the International Crops Research Institute for the Semi-Arid Tropics in Mali who conducted the trials in this study, the financial support of the McKnight Foundation, the Generation Challenge Program and the German Federal Ministry for Economic Cooperation and Development (BMZ) and the helpful comments by Benoit Clerget and those of the reviewers and corresponding editor improved the quality of the paper and are much appreciated. Further, we sincerely thank the Sorghum Breeding programs of the Institut de Economie Rural in Mali and the Institut de l’Environnement et des Recherches Agricoles in Burkina Faso for providing several (16 and 4, respectively) genotypes for this study. The work was undertaken as a part of the CGIAR Dryland Cereals Research Program.

Supplementary material

11104_2013_1978_MOESM1_ESM.xlsx (49 kb)
ESM 1 (XLSX 48 kb)
11104_2013_1978_MOESM2_ESM.pdf (333 kb)
ESM 2 (PDF 332 kb)

References

  1. Ahmad Z, Gill MA, Qureshi RH (2001) Genotypic variations of phosphorus utilization efficiency of crops. J Plant Nutr 24:1149–1171. doi: 10.1081/PLN-100106973 CrossRefGoogle Scholar
  2. Araújo AP, Teixeira MG (2003) Nitrogen and phosphorus harvest indices of common bean cultivars: implications for yield quantity and quality. Plant Soil 257:425–433. doi: 10.1023/A:1027353822088 CrossRefGoogle Scholar
  3. Batten GD (1992) A review of phosphorus efficiency in wheat. Plant Soil 146:163–168. doi: 10.1007/BF00012009 CrossRefGoogle Scholar
  4. Buerkert A, Bationo A, Piepho H-P (2001) Efficient phosphorus application strategies for increased crop production in sub-Saharan West Africa. Field Crop Res 72:1–15. doi: 10.1016/S0378-4290(01)00166-6 CrossRefGoogle Scholar
  5. Cichy KA, Snapp SS, Blair MW (2008) Plant growth habit, root architecture traits and tolerance to low soil phosphorus in an Andean bean population. Euphytica 165:257–268. doi: 10.1007/s10681-008-9778-2 CrossRefGoogle Scholar
  6. Clerget B, Rattunde HFW, Dagnoko S, Chantereau J (2007) An easy way to assess photoperiod sensitivity in sorghum: relationships of the vegetative-phase duration and photoperiod sensitivity. J SAT Agric Res 3:1–3Google Scholar
  7. Clerget B, Dingkuhn M, Goze E et al (2008) Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties. Ann Bot 101:579–594. doi: 10.1093/aob/mcm327 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cooper M, DeLacy IH (1994) Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theor Appl Genet 88:561–572PubMedCrossRefGoogle Scholar
  9. De Wet JMJ, Harlan JR (1972) The origin and domestication of Sorghum bicolor. Econ Bot 25:128–135CrossRefGoogle Scholar
  10. Doumbia MD, Hossner LR, Onken AB (1993) Variable sorghum growth in acid soils of subhumid West Africa. Arid Soil Res Rehabil 7:335–346. doi: 10.1080/15324989309381366 CrossRefGoogle Scholar
  11. Doumbia MD, Sidibé A, Bagayoko A et al (2003) Recommandations spécifiques d’engrais: calibration et validation du module phosphore du modèle NuMaSS. Afr Crop Sci J 11:17–26Google Scholar
  12. FAO (2010) FAO Stat: Sorghum. http://faostat.fao.org/site/567/default.aspx. Accessed 14 Jun 2013
  13. Groom PK, Lamont BB (2010) Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant Soil 334:61–72. doi: 10.1007/s11104-009-0135-6 CrossRefGoogle Scholar
  14. Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176. doi: 10.2135/cropsci1972.0011183X001200020005x CrossRefGoogle Scholar
  15. Harlan JR, Wet D, J JM (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176. doi: 10.2135/cropsci1972.0011183X001200020005xGoogle Scholar
  16. Henry A, Chaves NF, Kleinman PJA, Lynch JP (2010) Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low-input agro-ecosystem in Central America. Field Crop Res 115:67–78. doi: 10.1016/j.fcr.2009.10.004 CrossRefGoogle Scholar
  17. Hurrell RF, Reddy MB, Juillerat M-A, Cook JD (2003) Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 77:1213–1219PubMedGoogle Scholar
  18. Jones GPD, Blair GJ, Jessop RS (1989) Phosphorus efficiency in wheat—a useful selection criterion? Field Crop Res 21:257–264. doi: 10.1016/0378-4290(89)90007-5 CrossRefGoogle Scholar
  19. Leiser WL, Rattunde HF, Piepho H-P, Parzies HK (2012a) Getting the most out of sorghum low-input field trials in West Africa using spatial adjustment. J Agron Crop Sci 198:349–359. doi: 10.1111/j.1439-037X.2012.00529.x CrossRefGoogle Scholar
  20. Leiser WL, Rattunde HFW, Piepho H-P et al (2012b) Selection strategy for sorghum targeting phosphorus-limited environments in West Africa: analysis of multi-environment experiments. Crop Sci 52:2517–2527. doi: 10.2135/cropsci2012.02.0139 CrossRefGoogle Scholar
  21. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512. doi: 10.1071/BT06118 CrossRefGoogle Scholar
  22. Manske GGB, Ortiz-Monasterio JI, van Ginkel M et al (2001) Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. Eur J Agron 14:261–274. doi: 10.1016/S1161-0301(00)00099-X CrossRefGoogle Scholar
  23. Manske GGB, Ortiz-Monasterio JI, van Ginkel RM et al (2002) Phosphorus use efficiency in tall, semi-dwarf and dwarf near-isogenic lines of spring wheat. Euphytica 125:113–119CrossRefGoogle Scholar
  24. Manu A, Bationo A, Geiger SC (1991) Fertility status of selected millet producing soils of West Africa with emphasis on phosphorus. Soil Sci 152:315–320CrossRefGoogle Scholar
  25. Nord EA, Lynch JP (2008) Delayed reproduction in Arabidopsis thaliana improves fitness in soil with suboptimal phosphorus availability. Plant Cell Environ 31:1432–1441. doi: 10.1111/j.1365-3040.2008.01857.x PubMedCrossRefGoogle Scholar
  26. Ozturk L, Eker S, Torun B, Cakmak I (2005) Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil 269:69–80. doi: 10.1007/s11104-004-0469-z CrossRefGoogle Scholar
  27. Parentoni SN, Souza CL Jr (2008) Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes. Pesq Agrop Brasileira 43:893–901CrossRefGoogle Scholar
  28. Parentoni S, de Souza JC, de Carvalho AV et al (2010) Inheritance and breeding strategies for phosphorus efficiency in tropical maize (Zea Mays L.). Maydica 55:1–15Google Scholar
  29. R Core Team (2013) R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  30. Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296. doi: 10.1016/j.plantsci.2009.06.012 CrossRefGoogle Scholar
  31. Rattunde HFW, Weltzien E, Bramel-Cox PJ et al (1997) Population improvement of pearl millet and sorghum: current research, impact and issues for implementation. Proceedings of the international conference on genetic improvement of sorghum and pearl millet. Lubbock, Texas USA, pp 188–212Google Scholar
  32. Römer W, Schenk H (1998) Influence of genotype on phosphate uptake and utilization efficiencies in spring barley. Eur J Agron 8:215–224. doi: 10.1016/S1161-0301(97)00061-0 CrossRefGoogle Scholar
  33. Rose TJ, Wissuwa M (2012) Rethinking internal phosphorus utilization efficiency. Advances in agronomy. Elsevier, pp 185–217Google Scholar
  34. Rose TJ, Pariasca-Tanaka J, Rose MT et al (2010) Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crop Res 119:154–160. doi: 10.1016/j.fcr.2010.07.004 CrossRefGoogle Scholar
  35. Rose TJ, Rose MT, Pariasca-Tanaka J et al (2011) The frustration with utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Front Plant Sci. doi: 10.3389/fpls.2011.00073 Google Scholar
  36. Sattelmacher B, Horst WJ, Becker HC (1994) Factors that contribute to genetic variation for nutrient efficiency of crop plants. Z Pflanzenernähr Bodenkd 157:215–224CrossRefGoogle Scholar
  37. Schultz J, French R (1978) The mineral content of cereals, grain legumes and oilseed crops in South Australia. Aust J Exp Agric 18:579–585CrossRefGoogle Scholar
  38. Silva ÁED, Gabelman WH, Coors JG (1992) Inheritance studies of low-phosphorus tolerance in maize (Zea mays L.), grown in a sand-alumina culture medium. Plant Soil 146:189–197. doi: 10.1007/BF00012012 CrossRefGoogle Scholar
  39. Stoorvogel JJ, Smaling EMA, Janssen BH (1993) Calculating soil nutrient balances in Africa at different scales. Fertilizer Research 35:227–235. doi: 10.1007/BF00750641 CrossRefGoogle Scholar
  40. Subbarao GV, Ae N, Otani T (1997) Genetic variation in acquisition, and utilization of phosphorus from iron-bound phosphorus in pigeonpea. Soil Sci Plant Nutr 43:511–519. doi: 10.1080/00380768.1997.10414778 CrossRefGoogle Scholar
  41. Trolove S, Hedley M, Caradus J, Mackay A (1996) Uptake of phosphorus from different sources by Lotus Pedunculatus and three genotypes of Trifolium Repens.1. Plant yield and phosphate efficiency. Soil Res 34:1015–1026CrossRefGoogle Scholar
  42. VDLUFA (2011) Umweltanalytik. VDLUFA-Verl, DarmstadtGoogle Scholar
  43. Veneklaas EJ, Lambers H, Bragg J et al (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320. doi: 10.1111/j.1469-8137.2012.04190.x PubMedCrossRefGoogle Scholar
  44. Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306. doi: 10.1016/j.plantsci.2010.06.007 CrossRefGoogle Scholar
  45. White PJ, Veneklaas EJ (2012) Nature and nurture: the importance of seed phosphorus content. Plant Soil 357:1–8. doi: 10.1007/s11104-012-1128-4 CrossRefGoogle Scholar
  46. Wissuwa M, Ae N (2001) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breed 120:43–48. doi: 10.1111/j.1439-0523.2001.tb01698.x CrossRefGoogle Scholar
  47. Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783. doi: 10.1007/s001220050955 CrossRefGoogle Scholar
  48. Wortmann CS, Ferguson RB, Hergert GW et al (2013) Nutrient Management Suggestions for Grain Sorghum. http://www.ianrpubs.unl.edu/pages/publicationD.jsp?publicationId=671

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Willmar L. Leiser
    • 1
    • 2
  • H. Frederick W. Rattunde
    • 1
    Email author
  • Eva Weltzien
    • 1
  • Bettina I. G. Haussmann
    • 2
  1. 1.International Crops Research Institute for the Semi-Arid TropicsBamakoMali
  2. 2.Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany

Personalised recommendations