Plant and Soil

, Volume 376, Issue 1–2, pp 229–244 | Cite as

Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization

  • Thomas Lambrechts
  • Gauthier Lequeue
  • Guillaume Lobet
  • Bruno Godin
  • Charles L. Bielders
  • Stanley Lutts
Regular Article

Abstract

Backgrounds and aims

The phytostabilization potential of plants is a direct function of their root systems. An experimental design was developed to investigate the impact of Cd and Zn on the root distribution and morphology of Lolium perenne and Trifolium repens.

Methods

Seedlings were transplanted into columns filled with washed quartz and irrigated daily with Cd- or Zn-containing nutrient solutions during 1 month. Root biomass, root length density (RLD) and diameter were subsequently quantified as a function of depth. Pot experiments were also performed to quantify metal, lignin and structural polysaccharides concentrations as well as cell viability.

Results

Lolium perenne accumulated Cd and Zn in the roots whereas T. repens was unable to restrict heavy metal translocation. Cadmium and Zn reduced rooting depth and RLD but induced thick shoot-borne roots in L. perenne. Cd-induced root swelling was related to lignification occurring in the exodermis and parenchyma of central cylinder. Hemicelluloses and lignin did not play a key role in root metal retention. Cadmium slightly reduced mean root cell viability whereas Zn increased this parameter in comparison to Cd.

Conclusions

Even though plant species like Lolium perenne and Trifolium repens may appear suitable for a phytostabilization scheme based on their shoot metal tolerance, exposure to toxic heavy metals drastically impairs their root distribution. This could jeopardize the setting up of phytostabilization trials. The metal-induced alterations of root system properties are clearly metal- and species-specific. At sites polluted with multiple metals, it is therefore recommended to first test their impact on the root system of multiple plant species so as to select the most appropriate species for each site.

Keywords

Heavy metal contamination Root distribution Root diameter Lignin and structural polysaccharides Lolium perenne Trifolium repens 

References

  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Arganda-Carreras I, Fernandez-Gonzalez R, Munoz-Barrutia A, Ortiz-De-Solorzano C (2010) 3D reconstruction of histological sections : application to mammary gland tissue. Microsc Res Tech 73:1019–1029PubMedCrossRefGoogle Scholar
  3. Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ 319:13–25PubMedCrossRefGoogle Scholar
  4. Bidar G, Garcon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut 147:546–553PubMedCrossRefGoogle Scholar
  5. Bidar G, Verdin A, Garcon G, Pruvot C, Laruelle F, Grandmougin-Ferjani A, Douay F, Shirali P (2008) Changes in fatty acid composition and content of two plants (Lolium perenne and Trifolium repens) grown during 6 and 18 months in a metal (Pb, Cd, Zn) contaminated field. Water Air Soil Pollut 192:281–291CrossRefGoogle Scholar
  6. Bidar G, Pruvot C, Garçon G, Verdin A, Shirali P, Douay F (2009) Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ Sci Pollut Res 16:42–53CrossRefGoogle Scholar
  7. Boisson J, Bouchardon JL, Carrey A, Charissou AM, Colpaert J, Faure O, Guérin V, Joulian C, Pottecher G, Remon E, Vangronsveld J (2009) Evaluation des performances de la phytostabilisation sur un grand site. 2e Rencontres Nationales de la Recherche sur les Sites et Sols Pollués, ADEME, ParisGoogle Scholar
  8. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702PubMedCrossRefGoogle Scholar
  9. Broos K, Uyttebroek M, Mertens J, Smolders E (2004) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36:633–640CrossRefGoogle Scholar
  10. Chen G, Liu Y, Wang R, Zhang J, Owens G (2013) Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environ Sci Pollut Res:1–8Google Scholar
  11. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefGoogle Scholar
  12. Dawson LA, Thornton B, Pratt SM, Paterson E (2004) Morphological and topological responses of roots to defoliation and nitrogen supply in Lolium perenne and Festuca ovina. New Phytol 161:811–818CrossRefGoogle Scholar
  13. Deiana S, Manunza B, Palma A, Premoli A, Gessa C (2001) Interactions and mobilization of metal ions at the root-soil interface. In: Gobran GR, Wenzel WW, Lomobi E (ed) Trace elements in the rhizosphere. Academic Press, pp 127–148Google Scholar
  14. Delpérée C, Lutts S (2008) Growth inhibition occurs independently of cell mortality in tomato (Solanum lycopersicum) exposed to high cadmium concentrations. J Integr Plant Biol 50:300–310PubMedCrossRefGoogle Scholar
  15. Dickinson NM, Baker AJ, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediat 11:97–114CrossRefGoogle Scholar
  16. Domínguez MT, Maranón T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59PubMedCrossRefGoogle Scholar
  17. Ďurčeková K, Huttová J, Mistrik I, Ollé M, Tamás L (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290:61–68CrossRefGoogle Scholar
  18. Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121:66–74PubMedCrossRefGoogle Scholar
  19. Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566CrossRefGoogle Scholar
  20. Fusconi A, Gallo C, Camusso W (2007) Effects of cadmium on root apical meristems of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutat Res Genet Toxicol Environ 632:9–19CrossRefGoogle Scholar
  21. Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310PubMedCrossRefGoogle Scholar
  22. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187CrossRefGoogle Scholar
  23. Houben D, Pircar J, Sonnet P (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. J Geochem Explor 123:87–94CrossRefGoogle Scholar
  24. Hu G, Huang S, Chen H, Wang F (2010) Binding of four heavy metals to hemicelluloses from rice bran. Food Res Int 43:203–206CrossRefGoogle Scholar
  25. Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  26. Kapur JN, Sahoo PK, Wong ACK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Graph Model 29:273–285Google Scholar
  27. Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259CrossRefGoogle Scholar
  28. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225PubMedCrossRefGoogle Scholar
  29. Lambrechts T, Gustot Q, Couder E, Houben D, Iserentant A, Lutts S (2011) Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Chemosphere 85:1290–1298PubMedCrossRefGoogle Scholar
  30. Lambrechts T, Lequeue G, Lobet G, Lutts S (2013) Impact of cadmium and zinc on root system of Lolium perenne and Trifolium repens. Commun Agric Appl Biol Sci 78:19–24PubMedGoogle Scholar
  31. Larbi A, Morales F, Abadía A, Gogorcena Y, Lucena JJ, Abadía J (2002) Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Funct Plant Biol 29:1453–1464CrossRefGoogle Scholar
  32. Lobet G, Draye X (2013) Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems. Plant Methods 9: doi:10.1186/1746-4811-9-1
  33. Lopareva-Pohu A, Verdin A, Garçon G, Lounès-Hadj Sahraoui A, Pourrut B, Debiane D, Waterlot C, Laruelle F, Bidar G, Douay F, Shirali P (2011) Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environ Pollut 159:1721–1729PubMedCrossRefGoogle Scholar
  34. Lunáčková L, Šottníková A, Masarovičová E, Lux A, Streško V (2003) Comparison of cadmium effect on willow and poplar in response to different cultivation conditions. Biol Plant 47:403–411CrossRefGoogle Scholar
  35. Lutts S, Almansouri M, Kinet JM (2004) Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus. Plant Sci 167:9–18CrossRefGoogle Scholar
  36. Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37PubMedCrossRefGoogle Scholar
  37. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7PubMedCentralPubMedGoogle Scholar
  38. Macnicol RD, Beckett PH (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129CrossRefGoogle Scholar
  39. Maksimović I, Kastori R, Krstić L, Luković J (2007) Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol Plant 51:589–592CrossRefGoogle Scholar
  40. Mattia C, Bischetti GB, Gentile F (2005) Biotechnical characteristics of root systems of typical Mediterranean species. Plant Soil 278:23–32CrossRefGoogle Scholar
  41. Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, De Koe T, Bleeker P, Assunçāo A, Manceau A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249:187–202CrossRefGoogle Scholar
  42. Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070CrossRefGoogle Scholar
  43. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207CrossRefGoogle Scholar
  44. Nawirska A (2005) Binding of heavy metals to pomace fibers. Food Chem 90:395–400CrossRefGoogle Scholar
  45. Nishizono H, Ichikawa H, Suziki S, Ishii F (1987) The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 101:15–20CrossRefGoogle Scholar
  46. Passioura JB (2006) Viewpoint: the perils of pot experiments. Funct Plant Biol 33:1075–1079CrossRefGoogle Scholar
  47. Pejic B, Vukcevic M, Kostic M, Skundric P (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: effect of chemical composition. J Hazard Mater 164:146–153PubMedCrossRefGoogle Scholar
  48. Pichtel J, Salt CA (1998) Vegetative growth and trace metal accumulation on metalliferous wastes. J Environ Qual 27:618–624CrossRefGoogle Scholar
  49. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39PubMedCrossRefGoogle Scholar
  50. Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA (2012) Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct Plant Biol 39:839–850CrossRefGoogle Scholar
  51. Poschenrieder CH, Barceló J (2004) Water relations in heavy metal stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from molecules to ecosystems, 2nd edn. Springer, Berlin, pp 249–270CrossRefGoogle Scholar
  52. Přibyl P, Cepák V, Zachleder V (2005) Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: I. The effect of cadmium. Protoplasma 226:231–240PubMedCrossRefGoogle Scholar
  53. Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees-Struct Funct 21:385–402CrossRefGoogle Scholar
  54. Robinson BH, Banuelos G, Conesa HM, Evangelou MW, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266CrossRefGoogle Scholar
  55. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126PubMedGoogle Scholar
  56. Santibáñez C, Verdugo C, Ginocchio R (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10PubMedCrossRefGoogle Scholar
  57. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898PubMedCentralPubMedCrossRefGoogle Scholar
  58. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50PubMedCrossRefGoogle Scholar
  59. Šmilauerová M, Šmilauer P (2002) Morphological responses of plant roots to heterogeneity of soil resources. New Phytol 154:703–715CrossRefGoogle Scholar
  60. Sresty TVS, Rao MKV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13CrossRefGoogle Scholar
  61. Tack FMG, Singh SP, Verloo MG (1998) Heavy metal concentrations in consecutive saturation extracts of dredged sediment derived surface soils. Environ Pollut 103:109–115CrossRefGoogle Scholar
  62. Van Soest PV, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597PubMedCrossRefGoogle Scholar
  63. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar
  64. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefGoogle Scholar
  65. Weihermüller L, Siemens J, Deurer M, Knoblauch S, Rupp H, Göttlein A, Pütz T (2007) In situ soil water extraction: a review. J Environ Qual 36:1735–1748PubMedCrossRefGoogle Scholar
  66. Yang X, Baligar VC, Martens DC, Clark RB (1995) Influx, transport, and accumulation of cadmium in plant species grown at different Cd2+ activities. J Environ Sci Health B 30:569–583CrossRefGoogle Scholar
  67. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice, 3rd edn. The International Rice Research Institute, ManilaGoogle Scholar
  68. Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317PubMedCrossRefGoogle Scholar
  69. Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ (2012) Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta:1–9Google Scholar
  70. Zobel RW, Kinraide TB, Baligar VC (2007) Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil 297:243–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas Lambrechts
    • 1
    • 2
  • Gauthier Lequeue
    • 3
  • Guillaume Lobet
    • 3
    • 4
  • Bruno Godin
    • 5
  • Charles L. Bielders
    • 1
  • Stanley Lutts
    • 2
  1. 1.Groupe de Recherche en Génie Rural, Earth and Life Institute–Environmental SciencesUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Groupe de Recherche en Physiologie Végétale, Earth and Life Institute–AgronomyUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Groupe de Recherche en Ecophysiologie et Amélioration Végétale, Earth and Life Institute–AgronomyUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.PhytoSYSTEMSUniversité de LiègeLiègeBelgium
  5. 5.Unité “Biomasse, Bioproduits et Energies’’Centre Wallon de Recherches AgronomiquesLibramontBelgium

Personalised recommendations