Skip to main content

Advertisement

Log in

The role of harvest residues to sustain tree growth and soil nitrogen stocks in a tropical Eucalyptus plantation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Tropical plantations are likely to supply a growing share of the increasing world demand for forest products. We aimed to gain insight into the role of the nitrogen (N) contained in harvest residues (HR) for tree growth and soil N stocks.

Methods

We used 15N-labeled harvest residues to (1) study the dynamic of N release throughout decomposition, (2) determine the vertical transport pathways of N from the forest floor to the upper soil layers, and (3) quantifying the contributions of HR to soil N stocks and the supply of N to young Eucalyptus trees.

Results

Almost all of the 15N initially contained in the HR was recovered 27 months after deposition, with 21 % remaining in HR, 38 % being transferred to the underlying O layer, 21 % being transferred to the 0–15 cm soil layer, and approximately 15 % accumulating in the tree biomass. Our results supported the presence of two pathways of N transfers from the O layer to the mineral soil: (1) the leaching of dissolved 15N from fresh litter during the first year after planting which actively contributed to Eucalyptus N nutrition and (2) the transport of particulate organic matter in percolating water which contributed to maintain N stocks in the first 15 cm of the soil. Approximately 40 % of the N content in 2-year-old Eucalyptus trees was derived from the labeled HR.

Conclusions

The sustainability of fast-growing Eucalyptus trees established on N-poor sandy tropical soils largely relies on organic residues, as an early source of mineral N for tree and as a source of organic N in the top soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Behera N, Sahani U (2003) Soil microbial biomass and activity in response to Eucalyptus plantation and natural regeneration on tropical soil. For Ecol Manag 174(1–3):1–11

    Article  Google Scholar 

  • Bird JA, Kleber M, Torn MS (2008) 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org Geochem 39(4):465–477

    Article  CAS  Google Scholar 

  • Blumfield TJ, Xu ZH, Saffigna PG (2004) Carbon and nitrogen dynamics under windrowed residues during the establishment phase of a second-rotation hoop pine plantation in subtropical Australia. For Ecol Manag 200(1–3):279–291

    Article  Google Scholar 

  • Bouillet J-P, Safou-Matondo R, Laclau J-P, JdD N, Ranger J, Deleporte P (2004) Pour une production durable des plantations d’Eucalyptus au Congo: la fertilisation. Bois et forêts des tropiques 279:23–35

    Google Scholar 

  • Bouillet J-P, Laclau J-P, Gonçalves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil. 2: Nitrogen accumulation in the stands and biological N2 fixation. For Ecol Manag 255:3918–3930

    Article  Google Scholar 

  • Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44(1):9–20

    Article  CAS  Google Scholar 

  • Castaldi S, de Grandcourt A, Rasile A, Valentini R (2010) CO2, CH4 and N2O fluxes from soil of a burned grassland in Cental Africa. Biogeosciences 7:3489–3471

    Article  Google Scholar 

  • Chen CR, Xu ZH (2005) Soil carbon and nitrogen pools and microbial properties in a 6-year-old slash pine plantation of subtropical Australia: impacts of harvest residue management. For Ecol Manag 206(1–3):237–247

    Article  Google Scholar 

  • Christina M, Laclau J-P, Gonçalves J, Jourdan C, Nouvellon Y, Bouillet J-P (2011) Almost symmetrical vertical growth rates above and below ground in one of the world’s most productive forests. Ecosphere 2:1–10

    Article  Google Scholar 

  • D’Annunzio R, Conche S, Landais D, Saint-André L, Joffre R, Barthès BG (2008) Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo. For Ecol Manag 255(3–4):1050–1056

    Article  Google Scholar 

  • Dijkstra P, Ishizu A, Doucett R, Hart SC, Schwartz E, Menyailo OV, Hungate BA (2006) 13C and 15N natural abundance of the soil microbial biomass. Soil Biol Biochem 38:3257–3266

    Article  CAS  Google Scholar 

  • Fahey T, Yavitt J, Sherman R, Groffman P, Fisk M, Maerz J (2011) Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest. Ecosystems 14(2):326–340. doi:10.1007/s10021-011-9414-1

    Article  CAS  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010—key findings. Rome

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79(1–4):69–116

    Article  CAS  Google Scholar 

  • Frey SD, Six J, Elliott ET (2003) Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil–litter interface. Soil Biol Biochem 35(7):1001–1004

    Article  CAS  Google Scholar 

  • Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Barros ferraz SF, Paula Lima W, Santin Brancalion PH, Hubner A, Bouillet JP, Laclau JP, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27

    Google Scholar 

  • Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113(3–4):293–310

    Article  CAS  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil–plant systems. New Phytol 137(2):179–203

    Article  Google Scholar 

  • Huang Z, Clinton PW, Davis MR (2011) Post-harvest residue management effects on recalcitrant carbon pools and plant biomarkers within the soil heavy fraction in Pinus radiata plantations. Soil Biol Biochem 43(2):404–412

    Article  CAS  Google Scholar 

  • Iglesias-Trabado G, Wilstermann D (2008) Eucalyptus universalis. Global cultivated eucalypt forests map 2008. http://git-forestry-blog.blogspot.com/

  • Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47(4):215–222

    Article  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31(7–8):711–725

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171(1):52–60

    Article  CAS  Google Scholar 

  • Laclau J-P, Deleporte P, Ranger J, Bouillet JP, Kazotti G (2003) Nutrient dynamics throughout the rotation of Eucalyptus clonal stands in Congo. Ann Bot 91(7):879–892

    Article  CAS  PubMed  Google Scholar 

  • Laclau J-P, Toutain F, Thongo M’Bou A, Arnaud M, Joffre R, Ranger J (2004) The function of the superficial root mat in the biogeochemical cycles of nutrients in Congolese Eucalyptus plantations. Ann Bot 93(3):249–261

    Article  CAS  PubMed  Google Scholar 

  • Laclau J-P, Ranger J, Deleporte P, Nouvellon Y, Saint-André L, Marlet S, Bouillet J-P (2005) Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo: 3. Input–output budgets and consequences for the sustainability of the plantations. For Ecol Manag 210(1–3):375–391

    Article  Google Scholar 

  • Laclau J-P, Levillain J, Deleporte P, JdD N, Bouillet J-P, Saint André L, Versini A, Mareschal L, Nouvellon Y, Thongo M’Bou A, Ranger J (2010a) Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. For Ecol Manag 260(12):2148–2159

    Article  Google Scholar 

  • Laclau J-P, Ranger J, Gonçalves JLM, Maquère V, Krushe AV, M’Bou Thongo A, Nouvellon Y, Saint-André L, Bouillet J-P, Piccolo MC, Deleporte P (2010b) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations. Main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785

    Article  Google Scholar 

  • Laclau J-P, Silva EA, Lambais G, Bernoux M, le Maire G, Stape J-L, Bouillet J-P, Gonçalves JLM, Jourdan C, Nouvellon Y (2013) Dynamics of soil exploration by fine roots down to a depth of 10 m in Eucalyptus grandis plantations. Front Plant Sci. doi:10.3389/fpls.2013.00243

    PubMed Central  PubMed  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Shukla MK (2004) Principles of soil physics. Taylor & Francis, New-York

    Google Scholar 

  • Levillain J, Thongo M’bou A, Deleporte P, Saint-Andre L, Jourdan C (2011) Is the simple auger coring method reliable for below-ground standing biomass estimation in Eucalyptus forest plantations? Ann Bot 108:221–230

    Article  PubMed  Google Scholar 

  • Lindahl B, Finlay R, Olsson S (2001) Simultaneous, bidirectional translocation of 32P and 33P between wood blocks connected by mycelial cords of Hypholoma fasciculare. New Phytol 150(1):189–194

    Article  Google Scholar 

  • Mareschal L, Nzila JDD, Turpault MP, Thongo M’Bou A, Mazoumbou JC, Bouillet JP, Ranger J, Laclau JP (2011) Mineralogical and physico-chemical properties of ferralic arenosols derived from unconsolidated Plio-Pleistocenic deposits in the coastal plains of Congo. Geoderma 162(1–2):159–170

    Article  CAS  Google Scholar 

  • Mathers NJ, Mendham DS, O’Connell AM, Grove TS, Xu Z, Saffigna PG (2003) How does residue management impact soil organic matter composition and quality under Eucalyptus globulus plantations in southwestern Australia? For Ecol Manag 179:253–267

    Article  Google Scholar 

  • Mendham DS, Heagney EC, Corbeels M, O’Connell AM, Grove TS, McMurtrie RE (2004) Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus. Soil Biol Biochem 36(7):1067–1074

    Article  CAS  Google Scholar 

  • Mendham DS, Sankaran KV, O’Connell AM, Grove TS (2002) Eucalyptus globulus harvest residue management effects on soil carbon and microbial biomass at 1 and 5 years after plantation establishment. Soil Biol Biochem 34(12):1903–1912

    Article  CAS  Google Scholar 

  • Nambiar EKS, Kallio MH (2008) Increasing and sustaining productivity in subtropical and tropical plantation forests: making a difference through research partnership. In: NEKS (ed). Site management and productivity in tropical plantation forests. Proceedings of Workshops in Piracicaba (Brazil) 22–26 November 2004 and Bogor (Indonesia) 6–9 November 2006. CIFOR, Bogor, Indonesia. pp 205–227

  • Nzila JD, Bouillet J-P, Laclau J-P, Ranger J (2002) The effects of slash management on nutrient cycling and tree growth in Eucalyptus plantations in the Congo. For Ecol Manag 171(1–2):209–221

    Article  Google Scholar 

  • Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8(1):27–34

    Article  Google Scholar 

  • Rasse DP, Mulder J, Moni C, Chenu C (2006) Carbon turnover kinetics with depth in a French loamy soil. Soil Sci Soc Am J 70(6):2097–2105

    Article  CAS  Google Scholar 

  • Saint-André L, M’Bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manag 205(1–3):199–214

    Article  Google Scholar 

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nature Clim Change 1(6):304–307

    Article  CAS  Google Scholar 

  • Sayer EJ, Tanner EVJ (2010) Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J Ecol 98(5):1052–1062

    Article  Google Scholar 

  • Schwartz D, Foresta H, Mariotti A, Balesdent J, Massimba JP, Girardin C (1996) Present dynamics of the savanna-forest boundary in the Congolese Mayombe: a pedological, botanical and isotopic (13C and 14C) study. Oecologia 106(4):516–524

    Article  Google Scholar 

  • Swanston CW, Myrold DD (1997) Incorporation of nitrogen from decomposing red alder leaves into plants and soil of a recent clearcut in Oregon. Can J Soil Sci 27:1496–1502

    Google Scholar 

  • Tiarks A, Ranger J (2008) Soils properties in tropical plantation forests: evaluation and effects of site management: a summary. In: Nambiar EKS (ed) Site management and productivity in tropical plantation forests: workshop proceedings, 22–26 November 2004 Piracicaba, Brazil, and 6–9 November, Bogor, Indonesia. Center for International Forestry Research, Bogor, Indonesia, pp 191–204

  • Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785

    Article  CAS  Google Scholar 

  • Tonneijck FH, Jongmans AG (2008) The influence of bioturbation on the vertical distribution of soil organic matter in volcanic ash soils: a case study in northern Ecuador. Eur J Soil Sci 59(6):1063–1075

    Article  CAS  Google Scholar 

  • Tonon G, Ciavatta C, Solimando D, Gioacchini P, Tagliavini M (2007) Fate of 15N derived from soil decomposition of abscised leaves and pruning wood from apple (Malus domestica) trees. Soil Sci Plant Nutr 53(1):78–85

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol Biochem 19:697–702

    Google Scholar 

  • Versini A, Nouvellon Y, Laclau J-P, Kinana A, Mareschal L, Zeller B, Ranger J, Epron D (2013) The manipulation of organic residues affects tree growth and heterotrophic CO2 efflux in a tropical Eucalyptus plantation. For Ecol Manag 301:79–88

    Article  Google Scholar 

  • Vitousek PM, Sanford J (1986) Nutrient cycling in moist tropical forest. Ann Rev Ecol Evol Syst 17:137–167

    Article  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Rosengren U (2003) Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biol Biochem 35(7):997–999

    Article  CAS  Google Scholar 

  • Wood TE, Lawrence D, Clark DA, Chazdon RL (2009) Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90:109–121

    Article  PubMed  Google Scholar 

  • Wright CJ, Coleman DC (2000) Cross-site comparison of soil microbial biomass, soil nutrient status, and nematode trophic groups. Pedobiologia 44(1):2–23

    Article  Google Scholar 

  • Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A, Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:117–161

    Article  CAS  Google Scholar 

  • Zeller B, Colin-Belgrand M, Dambrine E, Martin F, Bottner P (2000) Decomposition of 15N-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia 123(4):550–559

    Article  Google Scholar 

  • Zeller B, Colin-Belgrand M, Dambrine E, Martin F (2001) Fate of nitrogen released from 15N-labeled litter in European beech forests. Tree Physiol 21:153–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the research Centre on Sustainability and Productivity of Industrial Plantations (CRDPI), the Republic of the Congo, and Eucalyptus Fiber Congo. We are grateful to T. Matsoumbou, S. Ngoyi, A. Diamesso, and A. Kinana from the CRDPI who performed field measurements; to Christian Hossan, Claude Brechet, and Nicolas Angeli from the Plateau Technique d′Ecologie Fonctionnelle-pôle isotopie of the INRA of Nancy who performed IRMS analyses. We thank Alain Robert for termite identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Versini.

Additional information

Responsible Editor: Elizabeth M Baggs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Versini, A., Zeller, B., Derrien, D. et al. The role of harvest residues to sustain tree growth and soil nitrogen stocks in a tropical Eucalyptus plantation. Plant Soil 376, 245–260 (2014). https://doi.org/10.1007/s11104-013-1963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1963-y

Keywords

Navigation