Skip to main content

Advertisement

Log in

Leaf responses to iron nutrition and low cadmium in peanut: anatomical properties in relation to gas exchange

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study evaluated how iron nutrition affect leaf anatomical and photosynthetic responses to low cadmium and its accumulation in peanut plants.

Methods

Seedlings were treated with Cd (0 and 0.2 μM CdCl2) and Fe (0, 10, 25, 50 or 100 μM EDTA-Na2Fe) in hydroponic culture.

Results

Cadmium accumulation is highest in Fe-deficient plants, and dramatically decreased with increasing Fe supply. The biomass, gas exchange, and reflectance indices were highest at 25 μM Fe2+ treatments, indicating the concentration is favorable for the growth of peanut plants. Both Fe deficiency and Cd exposure impair photosynthesis and reduce reflectance indices. However, they show different effects on leaf anatomical traits. Fe deficiency induces more and smaller stomata in the leaf surface, but does not affect the inner structure. Low Cd results in a thicker lamina with smaller stomata, thicker palisade and spongy tissues, and lower palisade to spongy thickness ratio. The stomatal length and length/width ratio in the upper epidermis, spongy tissue thickness, and palisade to spongy thickness ratio were closely correlated with net photosynthetic rate, stomatal conductance, and transpiration rate.

Conclusions

Cd accumulation rather than Fe deficiency alters leaf anatomy that may increase water use efficiency but inhibit photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson CA (1984) Development of leaf water deficits in detached green and lime-chlorotic leaves of seedlings from populations of Eucalyptus obliqua L’Hérit. Plant Soil 77:171–181

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Neumann G, Cesco S, Sanità di Toppi L, Pinton R (2012) Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. J Exp Bot 63:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986

    Article  PubMed  Google Scholar 

  • Büssis D, von Groll U, Fisahn J, Altmann T (2006) Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Funct Plant Biol 33:1037–1043

    Article  Google Scholar 

  • Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J Plant Physiol 154:30–36

    Article  CAS  Google Scholar 

  • Djebali W, Hediji H, Abbes Z, Barhoumi Z, Yaakoubi H, Zoghlami LB, Chaibi W (2010) Aspects on growth and anatomy of internodes and leaves of cadmium-treated Solanum lycopersicum L. plants. J Biol Res (Thessaloniki) 13:75–84

    CAS  Google Scholar 

  • Drake PL, Froend RH, Franks PJ (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64:495–505

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fahn A (1982) Plant anatomy. Pergamon Press, New York

    Google Scholar 

  • Fernández V, Eichert T, Del Río V, López-Casado G, Heredia-Guerrero JA, Abadía A, Heredia A, Abadía J (2008) Leaf structural changes associated with iron deficiency chlorosis in field-grown pear and peach: physiological implications. Plant Soil 311:161–172

    Article  Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143:286–292

    Article  CAS  Google Scholar 

  • Gomes MP, Marques TCLLDM, Nogueira MDG, Castro EM, Soares AM (2011) Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Sci Agric 68:566–573

    CAS  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Imsande J (1998) Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plant 103:139–144

    Article  CAS  Google Scholar 

  • Kampfenkel K, Montagu M, Inzé D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants (implications to oxidative stress). Plant Physiol 107:725–735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khudsar T, Iqbal M (2001) Cadmium-induced changes in leaf epidermes, photosynthetic rate and pigment concentrations in Cajanus cajan. Biol Plant 44:59–64

    Article  CAS  Google Scholar 

  • Kovačević G, Kastori R, Merkulov LJ (1999) Dry matter and leaf structure in young wheat plants as affected by cadmium, lead, and nickel. Biol Plant 42:119–123

    Article  Google Scholar 

  • Larbi A, Abadía A, Abadía J, Morales F (2006) Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89:113–126

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Guo J, Cui Y, Lü T, Zhang X, Shi G (2011) Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant Soil 344:131–141

    Article  CAS  Google Scholar 

  • Lu Z, Zhang Z, Su Y, Liu C, Shi G (2013) Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicol Environ saf 91:147–155

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Torres R, Etchevers-Barra JD, Alcántar-González G, Rodriguez-Alcazar J, Colinas-León MT (2006) Morphological changes in leaves of Mexican lime affected by iron chlorosis. J Plant Nutr 29:615–628

    Article  CAS  Google Scholar 

  • Martin SR, Llugany M, Barceló J, Poschenrieder C (2012) Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. Biol Plant 56:729–734

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Bell MJ, Wright GC, Cozens GD (2000) Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L.). Plant Soil 222:51–58

    Article  CAS  Google Scholar 

  • Mediavilla S, Escudero A, Heilmeier H (2001) Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiol 21:251–259

    Article  CAS  PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Morales F, Grasa R, Abadía A, Abadía J (1998) Iron chlorosis paradox in fruit trees. J Plant Nutr 21:815–825

    Article  CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469

    Article  CAS  Google Scholar 

  • Ouariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol Biochem 35:347–354

    CAS  Google Scholar 

  • Poulos HM, Goodale UM, Berlyn GP (2007) Drought response of two Mexican oak species, Quercus laceyi and Q. sideroxyla (Fagaceae), in relation to elevational position. Am J Bot 94:809–818

    Article  CAS  PubMed  Google Scholar 

  • Rodecap KD, Tingey DT, Lee EH (1994) Iron nutrition influence on cadmium accumulation by Arabidopsis thaliana (L.) Heynh. J Environ Qual 23:239–246

    Article  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sarwar N, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  PubMed  Google Scholar 

  • Shao G, Chen M, Wang W, Mou R, Zhang G (2007) Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regul 53:33–42

    Article  CAS  Google Scholar 

  • Shao G, Chen M, Wang D, Xu C, Mou R, Cao Z, Zhang X (2008) Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology. Sci China C Life Sci 51:245–253

    Article  CAS  PubMed  Google Scholar 

  • Shi G, Cai Q (2008) Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 46:627–630

    Article  CAS  Google Scholar 

  • Shi G, Cai Q (2009) Leaf plasticity in peanut (Arachis hypogaea L.) in response to heavy metal stress. Environ Exp Bot 67:112–117

    Article  CAS  Google Scholar 

  • Shimshi D (1967) Leaf chlorosis and stomatal aperture. New Phytol 66:455–461

    Article  Google Scholar 

  • Siedlecka A, Krupa Z (1996) Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 34:833–841

    CAS  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • Sridhar BB, Diehl SV, Han FX, Monts DL, Su Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141

    Article  Google Scholar 

  • Su G, Li F, Lin J, Liu C, Shi G (2013a) Peanut as a potential crop for bioenergy production via Cd-phytoextraction: a life-cycle pot experiment. Plant Soil 365:337–345

    Article  CAS  Google Scholar 

  • Su Y, Wang X, Liu C, Shi G (2013b) Variation in cadmium accumulation and translocation among peanut cultivars as affected by iron deficiency. Plant Soil 363:201–213

    Article  CAS  Google Scholar 

  • Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): Part II Microlocalization and cellular effects of cadmium. Environ Exp Bot 58:25–40

    Article  CAS  Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31171464) and the Anhui Provincial Natural Science Foundation (No. 11040606M87, 1308085MC47) is gratefully acknowledged. We would like to acknowledge the two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangrong Shi.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, G., Sun, L., Wang, X. et al. Leaf responses to iron nutrition and low cadmium in peanut: anatomical properties in relation to gas exchange. Plant Soil 375, 99–111 (2014). https://doi.org/10.1007/s11104-013-1953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1953-0

Keywords

Navigation