Plant and Soil

, Volume 374, Issue 1–2, pp 883–898 | Cite as

Comparison of methane, nitrous oxide fluxes and CO2 respiration rates from a Mediterranean cork oak ecosystem and improved pasture

  • Alla Shvaleva
  • Filipe Costa e Silva
  • Joaquim Miguel Costa
  • Alexandra Correia
  • Margaret Anderson
  • Raquel Lobo-do-Vale
  • David Fangueiro
  • Catarina Bicho
  • João Santos Pereira
  • Maria Manuela Chaves
  • Ute Skiba
  • Cristina Cruz
Regular Article

Abstract

Background and aims

During the recent decades, cork oak (Q. suber) mortality has been increasing in Mediterranean oak woodland endangering the economical and environmental sustainability of the “montado” ecosystem. This fact in combination with climate change and conversion of forestland to pasture may significantly affect the soil-atmosphere greenhouse gases (GHGs) exchange. Our study evaluates the impact of oak trees as compared to pasture on net ecosystem GHG (CH4, N2O, and CO2) exchange as well as the main environmental factors influencing this exchange.

Methods

We used field chamber measurements for the collection of GHGs under three different conditions: 1) open area (OA), 2) under tree canopy area (UC) and 3) improved pasture (IP). Experiments were done under typical Mediterranean climate at central Portugal in 2010 and 2011.

Results

The UC had higher nitrification potential, soil C/N ratio, electrical conductivity, litter input and soil organic matter (SOM) than OA and IP. SOM positively correlated with soil CH4 and N2O fluxes but not with soil CO2 respiration rates. Soil water content (SWC) drives both CH4 and N2O fluxes. Under certain conditions, when SWC reached a threshold (7 % for CH4 and 3 % for N2O) the result was net uptake and that net uptake increased with SWC. This was the case for the UC and OA. Conversely, for the IP soil water content above 4 % promoted net CH4 release.

Conclusions

Our results show that cork oak influences soil properties and consequently GHGs fluxes. In the UC the input of litter for SOM together with soil moisture, favoured microbiological activity and related GHGs fluxes. Soil temperature is a secondary factor in the studied conditions. Our results also emphasized the potential impact posed by decreased cork oak tree density in the functioning of the “montado” ecosystem.

Keywords

Evergreen oak Greenhouse gases Litter Mediterranean Organic matter Root density 

Abbreviations

GHG

Greenhouse gases

IP

Improved pasture

OA

Open area

Rs

Soil CO2 respiration rate

SOM

Soil organic matter

UC

Under tree canopy

References

  1. AFN (2010) Relatório do 50. Inventário Florestal Nacional (IFN5). Autoridade Florestal Nacional. Portugal continental: 30. Revisão, 1995–1998: relatório final. ISBN/ISSN 972-8097-47-6. Lisboa, PortugalGoogle Scholar
  2. Almagro M, López J, Querejeta JI, Martínez-Mena M (2009) Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41:594–605CrossRefGoogle Scholar
  3. Ambus P, Christensen S (1995) Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems. J Environ Qual 24:993–1001CrossRefGoogle Scholar
  4. Apcor (2010) Cork nature, culture, future. Cork information Bureau. Cork sector in numbers. Ed. APCOR. http://www.apcor.pt/userfiles/File/Cork%20Statistics.pdf
  5. Asensio D, Penuelas J, Ogaya R, Llusia J (2007) Seasonal soil and leaf CO2 exchange rates in a Mediterranean holm oak forest and their responses to drought conditions. Atmos Environ 41:2447–2455CrossRefGoogle Scholar
  6. Baldocchi DD, Ma SY, Rambal S, Misson L, Ourcival JM, Limousin JM, Pereira J, Papale D (2010) On the differential advantages of evergreenness and deciduousness in Mediterranean oak woodlands: a flux perspective. Ecol Appl 20:1583–1597PubMedCrossRefGoogle Scholar
  7. Bowden RD, Rullo G, Stevens GR, Steudler PA (2000) Soil fluxes of carbon dioxide, nitrous oxide, and methane at a productive temperature deciduous forest. J Environ Qual 29:268–276CrossRefGoogle Scholar
  8. Bradford MA, Wookey PA, Ineson P, Lappin-Scott HM (2001) Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil. Soil Biol Biochem 33:93–102CrossRefGoogle Scholar
  9. Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9(5):278–286CrossRefGoogle Scholar
  10. Butterbach-Bahl K, Kiese R (2005) Significance of forests as source for N2O and NO. In: Binkley D, Menyailo OV (eds) Tree species effects on soils: implications for global change. Springer, Dordrecht, pp 173–192CrossRefGoogle Scholar
  11. Butterbach-Bahl K, Breuer L, Gasche R, Willibald G, Papen H (2002) Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the north-eastern German lowlands 1. Fluxes of N2O, NO/NO2 and CH4 at forest sites with different N-deposition. For Ecol Manag 167:123–134CrossRefGoogle Scholar
  12. Cabrera ML (1993) Modeling the flush of nitrogen mineralization caused by drying and rewetting soils. Soil Sci Soc Am J 57:63–66CrossRefGoogle Scholar
  13. Caritat A, Garcia-Berthou E, Lapena R, Vilar L (2006) Litter production in a Quercus suber forest of Montseny (NE Spain) and its relationship to meteorological conditions. Ann For Sci 63:791–800CrossRefGoogle Scholar
  14. Carneiro J, Cardenas LM, Hatch DJ, Trindade H, Scholefield D, Clegg CD, Hobbs P (2010) Effect of the nitrification inhibitor dicyandiamide on microbial communities and N2O from an arable soil fertilized with ammonium sulphate. Environ Chem Lett 8(3):237–246Google Scholar
  15. Castaldi S, Fierro A (2005) Soil-atmosphere methane exchange in undisturbed and burned Mediterranean shrubland of southern Italy. Ecosystems 8:182–190CrossRefGoogle Scholar
  16. Castaldi S, Ermice A, Strumia S (2006) Fluxes of N2O and CH4 from soils of savannas and seasonally-dry ecosystems. J Biogeogr 33:401–415CrossRefGoogle Scholar
  17. Castaldi S, Costantini M, Cenciarelli P, Ciccioli P, Valentini R (2007) The methane sink associated to soils of natural and agricultural ecosystems in Italy. Chemosphere 66:723–729PubMedCrossRefGoogle Scholar
  18. Castro MS, Steuler PA, Melillo JM (1995) Factors controlling atmospheric methane consumption by temperature forest soils. Global Biogeochem Cycles 9:1–10CrossRefGoogle Scholar
  19. Chapuis-Lardy L, Wrage N, Metay A, Chottes JL, Bernouxs M (2007) Soil, a sink for N2O? A review. Glob Chang Biol 13:1–17CrossRefGoogle Scholar
  20. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640PubMedCentralPubMedGoogle Scholar
  21. Copeland J, Pielke RA, Kittel TGF (1996) Potential climatic impacts of vegetation change: a regional modeling study. J Geophys Res 101:7409–7418CrossRefGoogle Scholar
  22. Correia AC, Minunno F, Caldeira MC, Banza J, Mateus, Carneiro M, Wingate L, Shvaleva A, Ramos A, Jongen M, Bugalho MN, Nogueira C, Lecomte X, Pereira JS (2012) Soil water availability strongly modulates soil CO2 efflux in different Mediterranean ecosystems: model calibration using the Bayesian approach. Agric Ecosyst Environ 161:88–100CrossRefGoogle Scholar
  23. Crespo D (2010) Species diversity: David Crespo takes C3 pastures the next step to boost soil carbon. Aust Farm J 20:44–47Google Scholar
  24. Cruz C, Bio AMF, Jullioti A, Tavares A, Dias T, Martins-Loução MA (2008) Heterogeneity of soil surface ammonium concentration and other characteristics, related to plant specific variability in a Mediterranean-type ecosystem. Environ Pollut 154:414–423PubMedCrossRefGoogle Scholar
  25. Dalal R, Allen D, Livesley S, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscape: a review. Plant Soil 309:89–103CrossRefGoogle Scholar
  26. Davidson EA, Keller M, Erikson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667–680CrossRefGoogle Scholar
  27. De Dato GD, De Angelis P, Sirca C, Beier C (2010) Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga). Plant Soil 327:153–166CrossRefGoogle Scholar
  28. De Vries W, Posch M (2010) Modeling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900–2050. Environ Pollut 15:100–121Google Scholar
  29. Dobbie KE, Smith KA (1996) Comparisons of CH4 oxidation rates in woodland, arable and set aside soils. Soil Biol Biochem 28:1357–1365CrossRefGoogle Scholar
  30. Emanuel WR, Shugart HH, Stevenson MP (1985) Climate change and the broad-scale distribution of terrestrial ecosystem complexes. Clim Chang 7:29–43CrossRefGoogle Scholar
  31. Fang Y, Gundersen P, Zhang W, Zhou G, Christiansen JR, Mo J, Dong S, Zhang T (2009) Soil-atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in southern China. Plant Soil 319:37–48CrossRefGoogle Scholar
  32. Fangueiro D, Bol R, Chadwick D (2008) Assessment of the potential N mineralization of six particle size fractions of two different cattle slurries. J Plant Nutr Soil Sci 171:313–315CrossRefGoogle Scholar
  33. Gallardo A, Merino J (1992) Nitrogen immobilization to leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochemistry 15:213–228CrossRefGoogle Scholar
  34. Garcia-Herrera R, Paredes D, Trigo RM, Hernandez E, Barriopedro D, Mendes MA (2007) The outstanding 2004/05 drought in the Iberian Peninsula: associated atmospheric circulation. J Hydrometeorol 8:483–498CrossRefGoogle Scholar
  35. Giardina CP, Seiler JP (2004) The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus tadea L.) plantations located on the South Carolina Coastal Plain. Forest Ecol Manag 191:353–363CrossRefGoogle Scholar
  36. Goldberg SD, Gebauer G (2009) Drought turns a central European Norway spruce forest soil an N2O source to a transient N2O sink. Glob Chang Biol 15:850–860CrossRefGoogle Scholar
  37. Gundersen P, Christiansen JR, Alberti G, Bruggemann N, Castaldi S, Gasche R, Kitzler B, Klemedtsson L, Lobo-do-Vale R, Moldan F, Rutting T, Schleppi P, Weslien P, Zechmeister-Boltenstern S (2012) The response of methane and nitrous oxide fluxes to forest change in Europe. Biogeosciences 9:3999–4012CrossRefGoogle Scholar
  38. Haskl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl Environ Microbiol 70:5057–5065CrossRefGoogle Scholar
  39. Hiltbrunner D, Zimmermann S, Karbin S, Hagedorn F, Niklaus PA (2012) Increasing soil methane sink along a 120-years afforestation chronosequence is driven by soil moisture. Glob Chang Biol 18(12):3664–3671CrossRefGoogle Scholar
  40. Horneck DA, Miller RO (1998) Determination of total nitrogen in plant tissue. In: Gavlak R, Horneck D, Miller RO, Kotuby-Amacher J (ed) Handbook of reference methods for plant analysis. pp 75–83. WREPGoogle Scholar
  41. Inclan R, Uribe C, Sanchez L, Sanchez DM, Clavero A, Fernandez AM, Morante R, Blanco A, Jandl R (2012) N2O and CH4 fluxes in undisturbed and burned holm oak, scots pine and pyrenean oak forests in central Spain. Biogeochemistry 107:19–41CrossRefGoogle Scholar
  42. INE (2011) Estatísticas Agrícolas 2010. Instituto Nacional de Estatistica, INE IP, Lisbon, 118 ppGoogle Scholar
  43. Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrufo MF, Peressotti A (2009) Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux. Glob Chang Biol 15:1289–1301CrossRefGoogle Scholar
  44. IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  45. Jarvis PG, Rey A, Petsikos C, Wingate L, Rayment M, Pereira JS, Banza J, David JS, Miglietta F, Borghetti M, Manca G, Valentini R (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940PubMedCrossRefGoogle Scholar
  46. Joffre R, Ourcival JM, Rambal S, Rocheteau A (2003) The key-role of topsoil moisture on CO2 efflux from a Mediterranean Quercus ilex forest. Ann For Sci 60:519–526CrossRefGoogle Scholar
  47. Jongen M, Pereira JS, Aires LM, Pio CA (2011) The effect of drought and timing of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in Mediterranean grassland. Agric Forest Meteorol 151:595–606CrossRefGoogle Scholar
  48. Jongen M, Lecomte X, Unger S, Fangueiro D, Pereira JS (2013) Precipitation variability does not affect soil respiration and nitrogen dynamics in the understory of a Mediterranean oak woodland. Plant Soil. doi:10.1007/s11104-013-1728-7 Google Scholar
  49. Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biol Biochem 38:2510–2518CrossRefGoogle Scholar
  50. Lejon DPH, Chaussod R, Ranger J, Ranjard L (2005) Microbial community structure and density under tree species in an acid forest soil (Morvan, France). Microb Ecol 50:614–625PubMedCrossRefGoogle Scholar
  51. Livesley SJ, Kiese R, Miehle P, Weston CJ, Butterbach-Bahl K, Arndt SK (2009) Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginal woodland, a clover-grass pasture, and Pinus radiate and Eucalyprus globulus plantation. Glob Chang Biol 15:425–440. doi:10.1111/j.1365-2486.2008.01759.x CrossRefGoogle Scholar
  52. Lober RW and Reeder JD (1993) Modified waterlogged incubation method for assessing nitrogen mineralization in soils aggregates. Soil Sci Soc American J 57(2):400–403Google Scholar
  53. Lundquist EJ, Jackson LE, Scow KM (1999) Wet-dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol Biochem 31:1031–1038CrossRefGoogle Scholar
  54. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10CrossRefGoogle Scholar
  55. Maljanen M, Liikanen A, Silvola J, Martikainen P (2003) Methane fluxes on agricultural and forested boreal organic soils. Soil Use Manag 19:73–79CrossRefGoogle Scholar
  56. Menyailo OV, Hungate BA (2003) Interactive effects of tree species and soil moisture on methane consumprtion. Soil Biol Biochem 35:625–628CrossRefGoogle Scholar
  57. Nelson EW, Sommers LL (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of Soil analysis: chemical methods. Part3. Soil Sci. Soc. of Am. Madison WIGoogle Scholar
  58. Parton WJ, Holland EA, Del Grosso SJ et al (2001) Generalized model for NOx and N2O emissions from soils. J Geophys Res 106:17403–17419CrossRefGoogle Scholar
  59. Pereira JS, Mateus JA, Aires LM, Pita G, Pio C, David JS, Andrade V, Banza J, David TS, Paço TA, Rodrigues A (2007) Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems—the effect of drought. Biogeosciences 4:791–802CrossRefGoogle Scholar
  60. Pinto CA, Henriques MO, Figueiredo JP, David JS, Abreu FG, Pereira JS, Correia I, David S (2011) Phenology and growth dynamics in Mediterranean evergreen oaks: effects of environmental conditions and water relations. Forest Ecol Manag 262:500–508CrossRefGoogle Scholar
  61. Potes M, Costa MJ, Salgado R (2011) Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling. Hydrol Earth Syst Sci Discuss 8:11357–11385CrossRefGoogle Scholar
  62. Rey A, Pegoraro E, OyonarteC WA, Escribano P, Raimundo J (2011) Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biol Biochem 43:393–403CrossRefGoogle Scholar
  63. Rosenkranz P, Bruggemann N, Papen H, Xu Z, Seufer G, Butterbach-Bahl K (2006) N2O, NO and CH4 exchange and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences 3:121–133CrossRefGoogle Scholar
  64. Rovira P, Vallejo VR (1997) Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth. Soil Biol Biochem 29:1509–1520CrossRefGoogle Scholar
  65. Ryden JC (1981) N2O exchange between a grassland soil and the atmosphere. Nature 292:235–237CrossRefGoogle Scholar
  66. Saari A, Martikainen P (2001) Differential inhibition of methane oxidation and nitrification in forest soils by dimethyl sulfoxide (DMSO). Soil Biol Biochem 33:1567–1570CrossRefGoogle Scholar
  67. Schmidt I, Van Spanning RJM, Jetten MSM (2004) Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and Nor-deficient mutants. Microbiology 150:4107–4114PubMedCrossRefGoogle Scholar
  68. Shvaleva A, Lobo-do-Vale R, Cruz C, Castaldi S, Rosa AP, Chaves MM, Pereira JS (2011) Soil-atmosphere greennhouse gases (CO2, CH4 and N2O) exchange in evergreen oak woodland in southern Portugal. Plant Soil Environ 57(10):471–477Google Scholar
  69. Siljanen H, Saari A, Bodrossy L, Martikainen P (2012) Effect of nitrogen load on the function and diversity of methanotrophs in the littoral woodland of a boreal lake. Front Microbiol 3:39–44PubMedCentralPubMedCrossRefGoogle Scholar
  70. Skiba U, Pitcain C, Sheppard L, Kennedy V, Fowler D (2004) The influence of atmospheric N deposition on nitrous oxide and nitric oxide fluxes and soil ammonium and nitrate concentrations. Water Air Soil Pollut 4:37–43CrossRefGoogle Scholar
  71. Skiba U, Drewer J, Tang YS et al (2009) Biosphere-atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: measurement strategy and first data sets. Agric Ecosyst Environ 133(3–4):139–149CrossRefGoogle Scholar
  72. Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag 20(255):263Google Scholar
  73. Smith KA, Dobbie KE, Ball BC et al (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystem, and uncertainties in the global terrestrial sink. Glob Chang Biol 6:791–803CrossRefGoogle Scholar
  74. Talmon Y, Sternberg M, Grunzweig JM (2011) Impact of rainfall manipulation and biotic controls on soil respiration in Mediterranean and desert ecosystems along an arid gradient. Glob Chang Biol 17:1108–1118CrossRefGoogle Scholar
  75. Tate KR, Ross DJ, Saggar S, Hedley CB, Dando J, Singh BK, Lambie SM (2007) Methane uptake in soils from Pinus radiate plantations, a reverting shrubland and adjacent pasture: effects of land-use change, and soil texture, water and mineral nitrogen. Soil Biol Biochem 39:1437–1449CrossRefGoogle Scholar
  76. Tedeschi V, Rey A, Manca G, Valentini R, Jarvis PG, Borghetti M (2006) Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Chang Biol 12:110–121CrossRefGoogle Scholar
  77. Weslien P, Klemedtsoon K, Borjesson G, Klemedtsson L (2009) Strong pH influence on N2O and CH4 fluxes from forested organic soils. Eur J Soil Sci 60:311–320CrossRefGoogle Scholar
  78. World Research Report (2001) In: Robert M (ed) Soil carbon sequestration for improved land management. ISSN 0532–0488Google Scholar
  79. World Wild Foundation (2007) In: Gawler M, Lawrence JM (eds) Mid-term evaluation of the WWF Mediterranean Cork Oak Landscapes Programme. Final ReportGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alla Shvaleva
    • 1
  • Filipe Costa e Silva
    • 2
  • Joaquim Miguel Costa
    • 1
    • 2
  • Alexandra Correia
    • 2
  • Margaret Anderson
    • 3
  • Raquel Lobo-do-Vale
    • 2
  • David Fangueiro
    • 2
  • Catarina Bicho
    • 1
  • João Santos Pereira
    • 2
  • Maria Manuela Chaves
    • 1
  • Ute Skiba
    • 3
  • Cristina Cruz
    • 4
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisboaPortugal
  3. 3.Centre for Ecology and Hydrology, Natural Environment Research CouncilBush EstatePenicuikUK
  4. 4.Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations