Plant and Soil

, Volume 374, Issue 1–2, pp 55–71 | Cite as

Estimating the impact of changing fertilizer application rate, land use, and climate on nitrous oxide emissions in Irish grasslands

  • Dong-Gill Kim
  • Rashad Rafique
  • Paul Leahy
  • Mark Cochrane
  • Gerard Kiely
Regular Article

Abstract

Aim

This study examines the impact of changing nitrogen (N) fertilizer application rates, land use and climate on N fertilizer-derived direct nitrous oxide (N2O) emissions in Irish grasslands.

Methods

A set of N fertilizer application rates, land use and climate change scenarios were developed for the baseline year 2000 and then for the years 2020 and 2050. Direct N2O emissions under the different scenarios were estimated using three different types of emission factors and a newly developed Irish grassland N2O emissions empirical model.

Results

There were large differences in the predicted N2O emissions between the methodologies, however, all methods predicted that the overall N2O emissions from Irish grasslands would decrease by 2050 (by 40–60 %) relative to the year 2000. Reduced N fertilizer application rate and land-use changes resulted in decreases of 19–34 % and 11–60 % in N2O emission respectively, while climate change led to an increase of 5–80 % in N2O emission by 2050.

Conclusions

It was observed in the study that a reduction in N fertilizer and a reduction in the land used for agriculture could mitigate emissions of N2O, however, future changes in climate may be responsible for increases in emissions causing the positive feedback of climate on emissions of N2O.

Keywords

Nitrous oxide Nitrogen fertilizer Land-use change Climate change Scenario analysis 

References

  1. Abdalla M, Jones M, Smith P, Williams M (2009) Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils. Soil Use Manag 25:376–388. doi:10.1111/j.1475-2743.2009.00237.x CrossRefGoogle Scholar
  2. Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67:9–26. doi:10.1016/S0169-2046(03)00026-4 CrossRefGoogle Scholar
  3. Bart IL (2010) Urban sprawl and climate change: a statistical exploration of cause and effect, with policy options for the EU. Land Use Policy 27:283–292CrossRefGoogle Scholar
  4. Bodirsky BL, Popp A, Weindl I, Dietrich JP, Rolinski S, Scheiffele L, Schmitz C, Lotze-Campen H (2012) N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios. Biogeosciences 9:4169–4197CrossRefGoogle Scholar
  5. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biol 15:808–824CrossRefGoogle Scholar
  6. Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70CrossRefGoogle Scholar
  7. Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C (2004) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260:311–329. doi:10.1023/B:PLSO.0000030186.81212.fb CrossRefGoogle Scholar
  8. Cardenas LM, Thorman R, Ashleee N, Butler M, Chadwick D, Chambers B, Cuttle S, Donovan N, Kingston H, Lane S, Dhanoa MS, Scholefield D (2010) Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. Agric Ecosyst Environ 136:218–226CrossRefGoogle Scholar
  9. Cochrane M (2011) Scenario generation and climate change modelling of nitrous oxide emissions from grasslands in Ireland. M.Sc thesis. Cork Institute of Technology. Cork. Ireland. 153pGoogle Scholar
  10. Coulter BS, Lalor S (2008) Major and micro nutrient advice for productive agricultural crops. Teagasc, Johnstown CastleGoogle Scholar
  11. Coulter BS, Murphy WE, Culleton N, Finnerty E, Connolly L (2002) A survey of fertilizer use in 2000 for grassland and arable crops. Teagasc, Johnstown Castle Research Centre, WexfordGoogle Scholar
  12. Crutzen P (1970) The influence of nitrogen oxides on the atmospheric ozone content. QJR Meteorol Soc 96:320–325CrossRefGoogle Scholar
  13. de Klein CAM, Eckard RJ, van der Weerden TJ (2010) Nitrous oxide emissions from the nitrogen cycle in livestock agriculture: estimation and mitigation. In: Smith K (ed) Nitrous Oxide and Climate Change. Earthscan Ltd, London, pp 107–142Google Scholar
  14. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 663–745Google Scholar
  15. Department of Agriculture, Fisheries and Food (2008) Compendium of Irish Agricultural Statistics 2008. Dublin, Ireland. Available at http//www.agriculture.gov.ie/publications/2008/compendiumofirishagriculturalstatistics2008/ (Last Accessed, 01-08-2010)
  16. Department of Agriculture, Fisheries and Food (2011) Food Harvest 2020. Dublin, Ireland. Available at http://www.agriculture.gov.ie/agri-foodindustry/foodharvest2020/ (Last Accessed, 19-02-2012)
  17. Department of Environment, Heritage and Local Government (2006) European Communities (Good Agricultural Practice for Protection of Waters) Regulations 2006. S.I. No. 378 of 2006. The Stationary Office, Dublin, Ireland, 49 pp. Available at http://www.irishstatutebook.ie/2006/en/si/0378.html (Last Accessed, 01-08-2011)
  18. Dunne S, Hanafin J, Lynch P, McGrath R, Nishimura E, Nolan P, et al. (2008) Ireland in a warmer world: Scientific predictions of the Irish climate in the twenty-first century. Community Climate Change Consortium for Ireland (C4I). p.109. Available at http://www.c4i.ie/docs/IrelandinaWarmerWorld.pdf (Last Accessed, 18-01-2011)
  19. Eaton J, McGoff N, Byrne K, Leahy P, Kiely G (2008) Land cover change and soil organic carbon stocks in the Republic of Ireland 1851–2000. Clim Chang 91:317–334. doi:10.1007/s10584-008-9412-2 CrossRefGoogle Scholar
  20. Eckard RJ, Cullen BR (2011) Impacts of future climate scenarios on nitrous oxide emissions from pasture based dairy systems in south eastern Australia. Anim Feed Sci Technol 166–167:736–748CrossRefGoogle Scholar
  21. Environmental Protection Agency (2011) Ireland national inventory report 2011: Greenhouse gas emissions 1990 – 2009 reported to the United Nations framework convention on climate change, Johnstown Castle, Wexford, Ireland. Available at http://coe.epa.ie/ghg/nirdownloads.jsp (Last Accessed, 20-02-2012)
  22. FAOSTAT (2013) Statistics of the Food and Agriculture Organisation of the United Nations. http://faostat.fao.org (Last accessed, 29-03-2013)
  23. Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A et al (2007) Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agric Ecosyst Environ 121:135–152. doi:10.1016/j.agee.2006.12.024 CrossRefGoogle Scholar
  24. Flynn HC, Smith J, Smith KA, Wright J, Smith P, Massheder J (2005) Climate- and crop-responsive emission factors significantly alter estimates of current and future nitrous oxide emissions from fertilizer use. Global Change Biol 11:1522–1536. doi:10.1111/j.1365-2486.2005.00998.x CrossRefGoogle Scholar
  25. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB et al (eds) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  26. Goldberg SD, Gebauer G (2009) Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink. Global Change Biol 15:850–860CrossRefGoogle Scholar
  27. Hsieh CI, Leahy P, Kiely G, Li CS (2005) The effect of future climate perturbations on N2O emissions from a fertilized humid grassland. Nutr Cycl Agroecosyst 73:15–23. doi:10.1007/s10705-005-7129-4 CrossRefGoogle Scholar
  28. Humphreys J (2008) Nutrient issues on Irish farms and solutions to lower losses. Int J Dairy Technol 61:36–42. doi:10.1111/j.1471-0307.2008.00372.x CrossRefGoogle Scholar
  29. Hyde B, Hawkins M, Fanning A, Noonan D, Ryan M, O’Toole P et al (2006) Nitrous oxide emissions from a fertilized and grazed grassland in the South East of Ireland. Nutr Cycl Agroecosyst 75:187–200. doi:10.1007/s10705-006-9026-x CrossRefGoogle Scholar
  30. IFADATA (2013) International Fertilizer Industry Association database. http://www.fertilizer.org/ifa/Home-Page/STATISTICS (Last accessed, 29-03-2013)
  31. IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. IGES, JapanGoogle Scholar
  32. IPCC (2007) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  33. Kiely G, Carton O (2009) SoilC – Measurement and modelling of soil carbon stocks and stock changes in Irish soils. Datasets Available at http://erc.epa.ie/safer/iso19115/display?isoID=107 (Last Accessed, 01-03-2012)
  34. Kim D-G, Mishurov M, Kiely G (2010) Effect of increased N use and drought on N2O emission in a fertilized grassland. Nutr Cycl Agroecosyst 88:397–410. doi:10.1007/s10705-010-9365-5 CrossRefGoogle Scholar
  35. Kim D-G, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9:2459–2483CrossRefGoogle Scholar
  36. Kim D-G, Hernandez-Ramirez G, Donna G (2013) Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agric Ecosyst Environ 168:53–65. doi:10.1016/j.agee.2012.02.021 CrossRefGoogle Scholar
  37. Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, et al. (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). In: SMHI Reports Meteorology and Climatology 108, SMHI, SE–60176. Norrköping, Sweden, 54 pp. http://www.smhi.se/sgn0106/if/biblioteket/rapporter_pdf/RMK108.pdf. Accessed 3 Aug 2013
  38. Kruskal W, Wallis W (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621CrossRefGoogle Scholar
  39. Laganière J, Angers DA, Parè D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biol 16:439–453CrossRefGoogle Scholar
  40. Leip A, Busto M, Winiwarter W (2011) Developing spatially stratified N2O emission factors for Europe. Environ Pollut 159:3223–3232PubMedCrossRefGoogle Scholar
  41. Linn D, Doran J (1984) Effect of water–filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272CrossRefGoogle Scholar
  42. Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J et al (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB et al (eds) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge and New YorkGoogle Scholar
  43. Millar N, Robertson G, Grace P, Gehl R, Hoben J (2010) Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture. Mitig Adapt Strateg Glob Chang 15:185–204. doi:10.1007/s11027-010-9212-7 CrossRefGoogle Scholar
  44. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S et al (2000) Special Report on Emissions Scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  45. Nol L, Verburg PH, Moors EJ (2011) Trends in future N2O emissions due to land use change. J Environ Manage 94:78–90. doi:10.1016/j.jenvman.2011.1006.1053 PubMedCrossRefGoogle Scholar
  46. Parton WJ, Holland EA, Del Grosso SJ, Hartman MD, Martin RE, Mosier AR et al (2001) Generalized model for NOx and N2O emissions from soils. J Geophys Res 106:17403–17419. doi:10.1029/2001JD900101 CrossRefGoogle Scholar
  47. Rafique R, Hennessy D, Kiely G (2011a) Nitrous oxide emission from grazed grassland under different management systems. Ecosystems 14:563–582. doi:10.1007/s10021-011-9434-x CrossRefGoogle Scholar
  48. Rafique R, Peichl M, Hennessey D, Kiely G (2011b) Evaluating management effects on nitrous oxide emissions from grasslands using the process based model DNDC. Atmos Environ 45:6029–6039. doi:10.1016/j.atmosenv.2011.07.046 CrossRefGoogle Scholar
  49. Rafique R, Anex R, Henessy D, Kiely G (2012) What are the impacts of grazing and cutting events on the N2O dynamics in humid temperate grasslands? Geoderma 181:36–44CrossRefGoogle Scholar
  50. Rees RM, Baddeley JA, Bhogal A, Ball BC, Chadwick DR, Macleod M, Lilly A, Pappa VA, Thorman RE, Watson CA, Williams JR (2013) Nitrous oxide mitigation in UK agriculture. Soil Sci Plant Nutr 59:3–15CrossRefGoogle Scholar
  51. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, et al. (2003) The Atmospheric General Circulation Model ECHAM5. Part I: Model description. Max–Planck Institute for Meteorology, Report No. 349, Hamburg, Germany. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf. Accessed 3 Aug 2013
  52. Roelandt C, van Wesemael B, Rounsevell M (2005) Estimating annual N2O emissions from agricultural soils in temperate climates. Global Change Biol 11:1701–1711. doi:10.1111/j.1365-2486.2005.01025.x CrossRefGoogle Scholar
  53. Roelandt C, Dendoncker N, Rounsevell M, Perrin D, Van Wesemael B (2007) Projecting future N2O emissions from agricultural soils in Belgium. Global Change Biol 13:18–27. doi:10.1111/j.1365-2486.2006.01273.x CrossRefGoogle Scholar
  54. Rounsevell MDA, Ewert F, Reginster I, Leemans R, Carter TR (2005) Future scenarios of European agricultural land use II: projecting changes in cropland and grassland. Agric Ecosyst Environ 107:117–135. doi:10.1016/j.agee.2004.12.002 CrossRefGoogle Scholar
  55. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. doi:10.1093/biomet/52.3-4.591 Google Scholar
  56. Skiba U, Jones SK, Dragosits U, Drewer J, Fowler D, Rees RM, Pappa VA, Cardenas L, Chadwick D, Yamulki S, Manning AJ (2012) UK emissions of the greenhouse gas nitrous oxide. Phil Trans R Soc B 367:1175–1185PubMedCrossRefGoogle Scholar
  57. Steele-Dunne S, Lynch P, McGrath R, Semmler T, Wang SY, Hanafin J et al (2008) The impacts of climate change on hydrology in Ireland. J Hydrol 356:28–45. doi:10.1016/j.jhydrol.2008.03.025 CrossRefGoogle Scholar
  58. Sun W, Huang Y (2012) Synthetic fertilizer management for China’s cereal crops has reduced N2O emissions since the early 2000s. Environ Pollul 160:24–27CrossRefGoogle Scholar
  59. Tang Z, Engel B, Pijanowski B, Lim K (2005) Forecasting land use change and its environmental impact at a watershed scale. J Environ Manage 76:35–45. doi:10.1016/j.jenvman.2005.01.006 PubMedCrossRefGoogle Scholar
  60. The Irish Meteorological Service (2013) Climate of Ireland. http://www.met.ie/climate/climate-of-ireland.asp (Last accessed, 29-03-2013).
  61. Wang W, Yung Y, Lacis A, Mo T, Hansen J (1976) Greenhouse effects due to man-mad perturbations of trace gases. Science 194:685–690PubMedCrossRefGoogle Scholar
  62. Wang S, McGrath R, Semmler T, Sweeney C (2006) Validation of simulated precipitation patterns over Ireland for the period 1961–2000. Int J Climatol 26:251–266. doi:10.1002/joc.1246 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dong-Gill Kim
    • 1
    • 2
  • Rashad Rafique
    • 2
    • 3
  • Paul Leahy
    • 2
    • 4
  • Mark Cochrane
    • 5
  • Gerard Kiely
    • 2
  1. 1.Wondo Genet College of Forestry and Natural ResourcesHawassa UniversityShashemeneEthiopia
  2. 2.HYDROMET, Centre for Hydrology, Micrometeorology and Climate Change, Department of Civil and Environmental EngineeringUniversity College CorkCorkIreland
  3. 3.Department of Microbiology and Plant BiologyUniversity of OklahomaNormanUSA
  4. 4.Environmental Research InstituteUniversity College CorkCorkIreland
  5. 5.Department of Civil, Structural and Environmental EngineeringCork Institute of TechnologyCorkIreland

Personalised recommendations