Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data

Abstract

Background and aims

For the last decade, there has been an increasing global interest in using biochar to mitigate climate change by storing carbon in soil. However, there is a lack of detailed knowledge on the impact of biochar on the crop productivity in different agricultural systems. The objective of this study was to quantify the effect of biochar soil amendment (BSA) on crop productivity and to analyze the dependence of responses on experimental conditions.

Methods

A weighted meta-analysis was conducted based on data from 103 studies published up to April, 2013. The effect of BSA on crop productivity was quantified by characterizing experimental conditions.

Results

In the published experiments, with biochar amendment rates generally <30 t ha−1, BSA increased crop productivity by 11.0 % on average, while the responses varied with experimental conditions. Greater responses were found in pot experiments than in field, in acid than in neutral soils, in sandy textured than in loam and silt soils. Crop response in field experiments was greater for dry land crops (10.6 % on average) than for paddy rice (5.6 % on average). This result, associated with the higher response in acid and sandy textured soils, suggests both a liming and an aggregating/moistening effect of BSA.

Conclusions

The analysis suggests a promising role for BSA in improving crop productivity especially for dry land crops, and in acid, poor-structured soils though there was wide variation with soil, crop and biochar properties. Long-term field studies are needed to elucidate the persistence of BSA’s effect and the mechanisms for improving crop production in a wide range of agricultural conditions. At current prices and C-trading schemes, however, BSA would not be cost-effective unless persistent soil improvement and crop response can be demonstrated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

BSA:

Biochar soil amendment

RC:

Relative change over control

Reference

  1. Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield field crop research. Field Crop Res 111:81–84

    Article  Google Scholar 

  2. Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447

    PubMed  Article  CAS  Google Scholar 

  3. Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Glob Chang Biol Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  4. Chan KY, van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  5. Díaz-Zorita M, Duarte GA, Grove JH (2002) A review of no-till systems and soil management for sustainable crop production in the sub-humid and semiarid Pampas of Argentina. Soil Tillage Res 65:1–18

    Article  Google Scholar 

  6. Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  7. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  8. Haefele SM, Konboon Y, Wongboon W, Amarante S, Maarifat AA, Pferfer EM, Knoblauch C (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crop Res 121:430–440

    Article  Google Scholar 

  9. Hass A, Gonzalez JM, Lima IM, Godwin HW, Halvorson JJ, Boyer DG (2012) Chicken manure biochar as liming and nutrient source for acid Appalachian soil. J Environ Qual 41:1096–1106

    PubMed  Article  CAS  Google Scholar 

  10. Hedges LV, Gurevitch J, Crutis PS (1999) The meta-analysis of response rations in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  11. Hossain MK, Strezov V, Chan KY, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171

    PubMed  Article  CAS  Google Scholar 

  12. Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  13. Johnson DW, Curtis PS (2001) Effect of forest management on soil C and N storage: meta-analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  14. Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515

    Article  CAS  Google Scholar 

  15. Joseph SD, Graber ER, Chia C, Munroe P, Donne S, Nielsen T, Marjo TS, Rutlidge C, Pan GX, Li L, Taylor P, Rawal A, Hook J. (2013) Shifting paradigms on biochar: micro/nano-structures and soluble components are responsible for its plant-growth promoting ability. Carbon Management (in press)

  16. Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  17. Kleber M (2010) What is recalcitrant soil organic carbon? Environ Chem 7:320–332

    Article  CAS  Google Scholar 

  18. Knoblauch C, Maarifat AA, Pfeiffer EM, Haefele SM (2011) Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol Biochem 43:1768–1778

    Article  CAS  Google Scholar 

  19. Lal R (2004) Soil carbon Sequestration impacts on global climate change and food security. Science 304:1623–1627

    PubMed  Article  CAS  Google Scholar 

  20. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Chang 11:403–427

    Article  Google Scholar 

  21. Lehmann J (2007) A handful of carbon. Nature 447:143–144

    PubMed  Article  CAS  Google Scholar 

  22. Lentz RD, Ippolito JA (2011) Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J Environ Qual 41:1033–1043

    Article  Google Scholar 

  23. Liu XY, Qu JJ, Li LQ, Zhang AF, Zheng JF, Zheng JW, Pan GX (2012) Can biochar be an ecological engineering technology to depress N2O emission in rice paddies?—a cross site field experiment from South China. Ecol Eng 42:168–173

    Article  Google Scholar 

  24. Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63

    PubMed  Article  Google Scholar 

  25. Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombia savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  26. Oguntunde PG, Fosu M, Ajayi AE, van de Giesen N (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39:295–299

    Article  CAS  Google Scholar 

  27. Pan GX, Lin ZH, Li LQ, Zhang AF, Zheng JW, Zhang XH (2011) Perspective on biomass carbon industrialization of organic waste from agriculture and rural areas in China. J Agric Sci Tech 13:75–82 (in Chinese with English abstract)

    Google Scholar 

  28. Pan GX, Smith P, Pan WN (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric Ecosyst Environ 129:344–348

    Article  Google Scholar 

  29. Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A (2012) Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol Fertil Soils 48:511–517

    Article  Google Scholar 

  30. Qin HZ, Liu YY, Li LQ, Pan GX, Zhang XH, Zheng JW (2012) Adsorption of cadmium in solution by biochar from household biowaste. J Ecol Rural Environ 28:181–186 (in Chinese with English abstract)

    CAS  Google Scholar 

  31. Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284

    Article  CAS  Google Scholar 

  32. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    PubMed  Article  CAS  Google Scholar 

  33. Shang QY, Yang XX, Gao CM, Wu PP, Liu JJ, Xu YC, Shen QR, Zou JW, Guo SW (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob Chang Biol 17:2196–2210

    Article  Google Scholar 

  34. Singh PB, Hatton JB, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    PubMed  Article  CAS  Google Scholar 

  35. Smith P, Marino D, Cai ZC, Gwary D, Janzen H, Kumar P (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    Article  CAS  Google Scholar 

  36. Smith P, Martino Z, Cai ZC, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Dave R, Meyer LA (eds) Climate Change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 498–540

    Google Scholar 

  37. Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  38. Sohi S (2012) Carbon Storage with Benefits. Science 338:1034–1035

    PubMed  Article  CAS  Google Scholar 

  39. Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989

    PubMed  Article  CAS  Google Scholar 

  40. Spokas KA, Reicosky DC (2009) Impact of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  41. Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1:289–303

    Article  CAS  Google Scholar 

  42. Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  43. Taghizadeh-Toosi A, Clough TJ, Condron LM, Sherlock RR, Anderson CR, Craigie RA (2011) Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual 40:468–476

    Google Scholar 

  44. Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238

    Article  CAS  Google Scholar 

  45. van Zwieten L, Kimber S, Downie A, Morris S, Petty S, Rust J, Chan KY (2010) A glasshouse study on the interaction of low meneral ash biochar with N in a sandy soil. Aust J Soil Res 48:569–576

    Article  Google Scholar 

  46. van Zwieten L, Singh B, Jospeh S, Kimber S, Cowie A, Chan KY (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 227–249

    Google Scholar 

  47. Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate climate change. Nat Commun 1:56

    PubMed  Article  Google Scholar 

  48. Woolf D, Lehmann J (2012) Modelling the long-term response positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111:83–95

    Article  CAS  Google Scholar 

  49. Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  50. Yan XY, Yagi K, Akiyama H, Akimoto H (2005) Statistical analysis of the major variables controlling methane emission from rice fields. Glob Chang Biol 11:1131–1141

    Article  Google Scholar 

  51. Yanai Y, Toyota K, Okazaki M (2007) Effect of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  52. Zhang AF, Bian RJ, Pan GX, Cui LQ, Hussain Q, Li LQ, Zheng JW, Zheng JF, Zhang XH, Han XJ, Yu XY (2012a) Effect of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res 127:153–160

    Article  Google Scholar 

  53. Zhang AF, Cui LQ, Pan GX, Li LQ, Hussain Q, Zhang XH, Zheng JW, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  54. Zhang AF, Liu YM, Pan GX, Hussain Q, Li LQ, Zheng JW, Zhang XH (2012b) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from central China Plain. Plant Soil 351:263–275

    Article  CAS  Google Scholar 

  55. Zhang B, Liu XY, Pan GX, Zheng JF, Chi ZZ, Li LQ, Zhang XH, Zheng JW (2012c) Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles. Sci Agric Sin 45:4844–4853 (in Chinese with English abstract)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by NSFC under a grant 40830528 and by Ministry of Agriculture under a grant 2110402-201261. We are grateful to the authors of the literature cited for their constructive original research and the information provided for this analysis. Thanks also go to the audience comments given at preliminary presentations of this work at workshops related to biochar issues in 2012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Genxing Pan.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 57 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, X., Zhang, A., Ji, C. et al. Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373, 583–594 (2013). https://doi.org/10.1007/s11104-013-1806-x

Download citation

Keywords

  • C-sequestration
  • Soil fertility
  • Soil amendment
  • Meta-analysis
  • Soil carbon