Skip to main content

Background nitrous oxide emissions in agricultural and natural lands: a meta-analysis

An Erratum to this article was published on 13 September 2013

Abstract

Aim

This study aimed at better characterising background nitrous oxide (N2O) emissions (BNE) in agricultural and natural lands.

Methods

We compiled and analysed field-measured data for annual background N2O emission in agricultural (BNEA) and natural (BNEN) lands from 600 and 307 independent experimental studies, respectively.

Results

There were no significant differences between BNEA (median: 0.70 & mean: 1.52 kg N2O − N ha−1 yr−1) and BNEN (median:0.31 & mean:1.75 kg N2O − N ha−1 yr−1) (P > 0.05). A simultaneous comparison across all BNEA and BNEN indicated that BNEs from riparian, vegetable crop fields and intentional fallow areas were significantly higher than from boreal forests (P < 0.05). Correlation and regression analyses supported the underlying associations of soil organic carbon (C), nitrogen (N), pH, bulk density (BD),and/or air temperature (AT) with BNEs to a varying degree as a function of land-use or ecosystem type (Ps < 0.05).

Conclusions

Although overall BNEN tended to be lower than BNEA on median basis, results in general suggest that land-use shifts between natural and managed production systems would not result in consistent changes in BNE.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akiyama H, Yagi K, Yan X (2005) Direct N2O emissions from rice paddy fields: summary of available data. Global Biogeochem Cy 19, GB1005

    Article  Google Scholar 

  2. Akiyama H, Yan X, Yagi K (2006) Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci Plant Nutr 52:774–787

    Article  CAS  Google Scholar 

  3. Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38:471–495

    PubMed  Article  CAS  Google Scholar 

  4. Aulakh MS, Walters DT, Doran JW, Francis DD, Mosier AR (1991) Crop residue type and placement effects on denitrification and mineralization. Soil Sci Soc Am J 55:1020–1025

    Article  Google Scholar 

  5. Baggs EM (2011) Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr Opin Environ Sus 3:321–327

    Article  Google Scholar 

  6. Bhandral R, Saggar S, Bolan NS, Hedley MJ (2007) Transformation of nitrogen and nitrous oxide emission from grassland soils as affected by compaction. Soil Tillage Res 94:482–492

    Article  Google Scholar 

  7. Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70

    Article  CAS  Google Scholar 

  8. Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc 26:211–234

    Google Scholar 

  9. Bradley RL, Whalen J, Chagnon PL, Lanoix M, Alves MC (2011) Nitrous oxide production and potential denitrification in soils from riparian buffer strips: influence of earthworms and plant litter. Appl Soil Ecol 47:6–13

    Article  Google Scholar 

  10. Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosys 49:7–16

    Article  CAS  Google Scholar 

  11. Brown L, Syed B, Jarvis SC, Sneath RW, Phillips VR, Goulding KWT, Li C (2002) Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmos Environ 36:917–928

    Article  CAS  Google Scholar 

  12. Butterbach-Bahl K, Breuer L, Gasche R, Willibald G, Papen H (2002) Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands: 1. Fluxes of N2O, NO/NO2 and CH4 at forest sites with different N-deposition. For Ecol Manage 167:123–134

    Article  Google Scholar 

  13. Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M (2007) Soils, a sink for N2O? A review. Glob Change Biol 13:1–17

    Article  Google Scholar 

  14. Crutzen P (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J Roy Meteor Soc 96:320–325

    Article  Google Scholar 

  15. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    Article  CAS  Google Scholar 

  16. Curtin D, Beare MH, Hernandez-Ramirez G(2012) Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci Soc Am J doi: 10.2136/sssaj2012.0011 (available online 24 July 2012)

  17. Dalal RC, Allen DE (2008) Greenhouse gas fluxes from natural ecosystems. Aust J Bot 56:369–407

    Article  CAS  Google Scholar 

  18. de Klein CAM, Eckard RJ, van der Weerden TJ (2010) Nitrous oxide emissions from the N cycle in livestock agriculture: estimation and mitigation. In: Nitrous Oxide and Climate Change (Ed. K.A. Smith), Earthscan Publications. pp 107–142

  19. Dobbie KE, Smith KA (2001) The effects of temperature, water-filled pore space and land-use on N2O emissions from an imperfectly drained gleysol. Eur J Soil Sci 52:667–673

    Article  CAS  Google Scholar 

  20. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G (2007) Changes in atmospheric constituents and in radiative forcing In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (Ed.), Climate Change 2007: The Physical Science Basis., pp. 129–234

  21. Groffman P, Hanson G (1997) Wetland denitrification: influence of site quality and relationships with wetland delineation protocols. Soil Sci Soc Am J 61:323–329

    Article  CAS  Google Scholar 

  22. Groffman PM, Gold AJ, Jacinthe PA (1998) Nitrous oxide production in riparian zones and groundwater. Nutr Cycl Agroecosyst 52:179–186

    Article  CAS  Google Scholar 

  23. Gu J, Zheng X, Wang Y, Ding W, Zhu B, Chen X, Wang Y, Zhao Z, Shi Y, Zhu J (2007) Regulatory effects of soil properties on background N2O emissions from agricultural soils in China. Plant Soil 295:53–65

    Article  CAS  Google Scholar 

  24. Gu J, Zheng X, Zhang W (2009) Background nitrous oxide emissions from croplands in China in the year 2000. Plant Soil 320:307–320

    Article  CAS  Google Scholar 

  25. Hefting M, Beltman B, Karssenberg D, Rebel K, van Riessen M, Spijker M (2006) Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands. Environ Pollut 139:143–156

    PubMed  Article  CAS  Google Scholar 

  26. Hernandez-Ramirez G, Brouder SM, Smith DR, Van Scoyoc GE (2009a) Greenhouse gas fluxes in an eastern corn belt soil: weather, nitrogen source and rotation. J Environ Qual 38:841–854

    PubMed  Article  CAS  Google Scholar 

  27. Hernandez-Ramirez G, Brouder SM, Smith DR, Van Scoyoc GE, Michalski G (2009b) Nitrous oxide production in an eastern corn belt soil: sources and redox range. Soil Sci Soc Am J 73:1182–1191

    Article  CAS  Google Scholar 

  28. Huang Y, Zou J, Zheng X, Wang Y, Xu X (2004) Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biol Biochem 36:973–981

    Article  CAS  Google Scholar 

  29. Intergovernmental Panel on Climate Change (IPCC) (2006) IPCC guidelines for national greenhouse gas inventories. IGES, Hayama

    Google Scholar 

  30. Kim D-G, Isenhart TM, Parkin TB, Schultz RC, Loynachan TE, Raich JW (2009) Nitrous oxide emissions from riparian forest buffers, warm-season and cool-season grass filters, and crop fields. Biogeosci Discuss 6:607–650

    Article  Google Scholar 

  31. Kim D-G, Hernandez-Ramirez G, Giltrap D (2012a) Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: a meta-analysis. Agric Ecosyst Environ 168:53–65

    Article  Google Scholar 

  32. Kim D-G, Vargas R, Bond-Lamberty B, Turetsky MR (2012b) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9:2459–2483

    Article  CAS  Google Scholar 

  33. Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    PubMed  CAS  Google Scholar 

  34. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Ann Rev Microbiol 55:485–529

    Article  CAS  Google Scholar 

  35. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  36. Li C, Zhuang Y, Cao M, Crilll P, Dai Z, Frolking S, Moore B, Salas W, Song W, Wang X (2001) Comparing a national inventory of N2O emissions from arable lands in China developed with a process-based agro-ecosystem model to the IPCC methodology. Nutr Cycl Agroecosyst 60:159–170

    Article  CAS  Google Scholar 

  37. Miller MN, Zebarth BJ, Dandie CE, Burton DL, Goyer C, Trevors JT (2008) Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol Biochem 40:2553–2562

    Article  CAS  Google Scholar 

  38. Neftel A, Flechard C, Ammann C, Conen F, Emmenegger L, Zeyer K (2007) Experimental assessment of N2O background fluxes in grassland systems. Tellus B 59:470–482

    Article  Google Scholar 

  39. Parkin TB, Kaspar TC (2006) Nitrous oxide emissions from corn–soybean systems in the Midwest. J Environ Qual 35:1496–1506

    PubMed  Article  CAS  Google Scholar 

  40. Parkin TB, Kaspar TC, Singer JW (2006) Cover crop effects on the fate of N following soil application of swine manure. Plant Soil 289:141–152

    Article  CAS  Google Scholar 

  41. Patureau D, Zumstein E, Delgenes J, Moletta R (2000) Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb Ecol 39:145–152

    PubMed  Article  CAS  Google Scholar 

  42. Pihlatie MK, Christiansen JR, Aaltonen H, Korhonen JFJ, Nordbo A, Rasilo T, Benanti G, Giebels M, Helmy M, Sheehy J, Jones S, Juszczak R, Klefoth R, Lobo-do-Vale R, Rosa AP, Schreiber P, Serça D, Vicca S, Wolf B, Pumpanen J (2013) Comparison of static chambers to measure CH4 emissions from soils. Agr For Meteorol 171–172:124–136

    Article  Google Scholar 

  43. Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2005) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  Google Scholar 

  44. Rochette P, Eriksen-Hamel NS (2008) Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Sci So Am J 72:331–342

    Article  CAS  Google Scholar 

  45. Russell AE, Raich JW (2012) Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species. Proc Natl Acad Sci 109:10398–10402

    PubMed  Article  CAS  Google Scholar 

  46. Saggar S, Luo J, Kim D-G, Jha N (2011) Intensification in pastoral farming: impacts on soil attributes and gaseous emissions. In: B. P. Singh, A. Cowie and Y. Chan (Eds.), Soil Health and Climate Change (Soil Biology Series). Springer-Verlag. pp. 207–236

  47. Sauer TJ, Compston SR, West CP, Hernandez-Ramirez G, Gbur EE, Parkin TB (2009) Nitrous oxide emissions from a bermudagrass pasture: interseeded winter rye and poultry litter. Soil Biol Biochem 41:1417–1424

    Article  CAS  Google Scholar 

  48. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  49. Smith DR, Hernandez-Ramirez G, Bucholtz DL, Shalamar SD, Stott DE (2011) Nitrogen fertilizer and tillage management impacts on non-CO2greenhouse emissions in corn/soybean and biomass cropping systems. Soil Sci Soc Am J 75:1070–1082

    Article  CAS  Google Scholar 

  50. Sozanska M, Skiba U, Metcalfe S (2002) Developing an inventory of N2O emissions from British soils. Atmos Environ 36:987–998

    Article  CAS  Google Scholar 

  51. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228

    Article  CAS  Google Scholar 

  52. Uchida Y, Clough TJ, Kelliher FM, Sherlock RR (2008) Effects of aggregate size, soil compaction, and bovine urine on N2O emissions from a pasture soil. Soil Biol Biochem 40:924–931

    Article  CAS  Google Scholar 

  53. van Beek CL, Pleijter M, Kuikman PJ (2011) Nitrous oxide emissions from fertilized and unfertilized grasslands on peat soil. Nutr Cycl Agroecosyst 89:453–461

    Article  CAS  Google Scholar 

  54. van Groenigen WJ, Velthof GL, van der Bolt FJE, Vos A, Kuikman PJ (2005) Seasonal variation in N2O emissions from urine patches: effects of urine concentration, soil compaction and dung. Plant Soil 273:15–27

    Article  Google Scholar 

  55. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler D, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  56. Wang WC, Yung YL, Lacis AA, Mo T, Hansen JE (1976) Greenhouse effects due to man-mad perturbations of trace gases. Science 194:685–690

    PubMed  Article  CAS  Google Scholar 

  57. Wang J, Xiong Z, Yan X (2011) Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmos Environ 45:6923–6929

    Article  CAS  Google Scholar 

  58. Watts SH, Seitzinger SP (2000) Denitrification rates in organic and mineral soils from riparian sites: a comparison of N2 flux and acetylene inhibition methods. Soil Biol Biochem 32:1383–1392

    Article  CAS  Google Scholar 

  59. Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  60. Yan X, Akimoto H, Ohara T (2003) Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Glob Change Biol 9:1080–1096

    Article  Google Scholar 

Download references

Acknowledgments

We thank scientists who measured, analyzed, and published the data compiled for this meta-analysis. We appreciate Hizbullah Jamali and anonymous reviewers for constructive suggestions that have improved substantially this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong-Gill Kim.

Additional information

Responsible Editor: Stefano Manzoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

We have created a Blog entitled ‘Background nitrous oxide emissions in agricultural and natural lands’ (http://backgroundn2oemissions.blogspot.com/) and an open-access database entitled ‘Background nitrous oxide emissions in agricultural and natural lands database’ (https://docs.google.com/spreadsheet/ccc?key=0AjWu6bR8SA9idHpEb1l6ZWlPbm14bUd6cXhxcjZjQ0E; linked in the Blog) based on this review. In the Blog, we have posted a technical summary of each section of this review, where comments can be left under the posts. The database contains detailed information on the studies reported on the background nitrous oxide emissions in agricultural and natural lands, such as location, climate, crop type, soil properties, N2O emission measurement periods, N input rate, biomass yield, and cumulative N2O emission. The authors do not have any relationship with the companies currently being used to host the Blog and databases. (XLSX 289 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, DG., Giltrap, D. & Hernandez-Ramirez, G. Background nitrous oxide emissions in agricultural and natural lands: a meta-analysis. Plant Soil 373, 17–30 (2013). https://doi.org/10.1007/s11104-013-1762-5

Download citation

Keywords

  • Background nitrous oxide emissions
  • Agricultural lands
  • Natural lands
  • Land-use type
  • Meta-analysis
  • Negative nitrous oxide flux