Skip to main content

Advertisement

Log in

Rhizobacteria (Pseudomonas sp. SB) assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The objectives of this study were to examine the effect of direct inoculation of seeds with the rhizobacteria Pseudomonas sp. SB on the growth of tall fescue and phytodegradation efficiency in an oily-sludge-contaminated soil.

Methods

SB isolated from rhizosphere soil of tall fescue was evaluated for their plant-growth-promoting characters and ability to produce biosurfactant. A pot experiment was conducted to study the effect of inoculation of SB on phytoremediation.

Results

SB reduced the surface tension of culture media and produced indole acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylate deaminase. Inoculation of SB increased shoot and root dry weights of tall fescue in oily-sludge-contaminated soil by 28 % and 19 %, respectively. Over 120 days, the content of total petroleum hydrocarbon in soil decreased by 33.9 %, 68.0 %, and 84.5 %, and of polycyclic aromatic hydrocarbons (PAHs) by 32.9 %, 40.9 %, and 46.2 %, respectively, in the no-plant control, tall fescue, and tall fescue + SB treatments. Inoculation of SB also increased the activity and biodiversity of soil microbial communities in the planted treatments.

Conclusions

SB could produce biosurfactant and exhibited a number of characters of plant-growth-promoting rhizobacteria. Inoculation of SB to tall fescue led to more effective remediation of oily-sludge-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahn CK, Woo SH, Park JM (2010) Surface solubilization of phenanthrene by surfactant sorbed on soils with different organic matter contents. J Hazard Mater 177:799–806

    Article  PubMed  CAS  Google Scholar 

  • Amprayn K, Rose MT, Kecskés M, Pereg L, Nguyen HT, Kennedy IR (2012) Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl Soil Ecol 61:295–299

    Article  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  PubMed  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  PubMed  CAS  Google Scholar 

  • Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeterior Biodegrad 62:274–280

    Article  CAS  Google Scholar 

  • Dean SM, Jin Y, Cha DK, Wilson SV, Radosevich M (2001) Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. J Environ Qual 30:1126–1133

    Article  PubMed  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    PubMed  CAS  Google Scholar 

  • Harch BD, Correll RL, Meech W, Kirkby CA, Pankhurst CE (1997) Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J Microbiol Methods 30:91–101

    Article  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  PubMed  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  PubMed  CAS  Google Scholar 

  • Jin-Hee P, Nanthi B, Mallavarapu M, Ravi N (2011) Isolation and characterization of phosphate solubilizing bacteria from phosphate amended and lead contaminated soils. J Hazard Mater 185:829–836

    Article  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  PubMed  CAS  Google Scholar 

  • Lai CC, Huang Y, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    Article  PubMed  CAS  Google Scholar 

  • Liu WX, Luo YM, Teng Y, Li ZG, Christie P (2009) Prepared bed bioremediation of oily sludge in an oilfield in northern China. J Hazard Mater 161:479–484

    Article  PubMed  CAS  Google Scholar 

  • Liu WX, Luo YM, Teng Y, Li ZG, Ma L (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Heal 32:23–29

    Article  CAS  Google Scholar 

  • Liu WX, Wang XB, Wu LH, Chen MF, Tu C, Luo YM, Christie P (2012) Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge. Chemosphere 87:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Lu RK (1999) Analytical methods of soil agricultural chemistry. China Agricultural Science and Technology Press, Beijing (in Chinese)

    Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165:195–209

    Article  CAS  Google Scholar 

  • Muratova AY, Dmitrieva TV, Panchenko LV, Turkovskaya OV (2008) Phytoremediation of oil-sludge-contaminated soil. Int J Phytoremediation 10:486–502

    Article  PubMed  CAS  Google Scholar 

  • Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  PubMed  CAS  Google Scholar 

  • Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833

    Article  CAS  Google Scholar 

  • Ping LF, Luo YM, Zhang HB, Li QB, Wu LH (2007) Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environ Pollut 147:358–365

    Article  PubMed  CAS  Google Scholar 

  • Plaza G, Jangid K, Lukasik K, Nalecz-Jawecki G, Berry C, Brigmon R (2008) Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation. Bull Environ Contam Toxicol 81:329–333

    Article  PubMed  CAS  Google Scholar 

  • Płaza G, Nałecz-Jawecki G, Ulfig K, Brigmon RL (2005a) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59:289–296

    Article  PubMed  Google Scholar 

  • Płaza G, Nałecz-Jawecki G, Ulfig K, Brigmon RL (2005b) Assessment of genotoxic activity of petroleum hydrocarbon-bioremediated soil. Ecotoxicol Environ Saf 62:415–420

    Article  PubMed  Google Scholar 

  • Propst TL, Lochmiller RL, Qualls CW Jr, McBee K (1999) In situ (mesocosm) assessment of immunotoxicity risks to small mammals inhabiting petrochemical waste sites. Chemosphere 38:1049–1067

    Article  PubMed  CAS  Google Scholar 

  • Reed MLE, Warner B, Glick B (2005) Plant growth–promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Wachtendorf U, Heuer H, Liu W, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64:1220–1225

    PubMed  CAS  Google Scholar 

  • Tahhan RA, Ammari TG, Goussous SJ, Al-Shdaifat HI (2011) Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy. Int Biodeterior Biodegrad 65:130–134

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T, Gopur M (2003) Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions. Process Saf Environ Prot 81:203–209

    Article  CAS  Google Scholar 

  • Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge-contaminated soil. Environ Int 26:409–411

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang Q, Wang S, Li F, Guo G (2012) Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 111:308–315

    Article  PubMed  CAS  Google Scholar 

  • Wenzel W (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42:252–258

    Article  PubMed  CAS  Google Scholar 

  • Wunsche L, Bruggemann L, Babel W (1995) Determination of substrate utilization patterns of soil microbial communities: an approach to assess population changes after hydrocarbon pollution. FEMS Microbiol Ecol 17:295–305

    Article  Google Scholar 

  • Yang YH, Yao J (2000) Effect of pesticide pollution against functional microbial diversity in soil (in Chinese). J Microbiol 20:23–25

    Google Scholar 

  • Zhang Y, He L, Chen Z, Wang Q, Qian M, Sheng X (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (41001182), Jiangsu Provincial Natural Science Foundation of China (BK2012891), and the Environmental Protection Public Welfare Special Fund for Scientific Research (201009015) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuxing Liu.

Additional information

Responsible Editor: Peter Christie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Sun, J., Ding, L. et al. Rhizobacteria (Pseudomonas sp. SB) assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.). Plant Soil 371, 533–542 (2013). https://doi.org/10.1007/s11104-013-1717-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1717-x

Keywords