Plant and Soil

, Volume 371, Issue 1–2, pp 339–354 | Cite as

Soil C and N dynamics in a Mediterranean oak woodland with shrub encroachment

  • María Xesús Gómez-ReyEmail author
  • Manuel Madeira
  • Serafin Jesús Gonzalez-Prieto
  • João Coutinho
Regular Article


Background and aims

Intensive land use has led to degradation and abandonment of Portuguese oak woodlands, and subsequent shrub encroachment may have altered the spatial heterogeneity of soil C and N pools. The aim of this study was to evaluate the effects of shrub invasion on soil C and N dynamics in an oak woodland in Southern Portugal.


Soil was sampled beneath and outside scattered Quercus suber L. canopies, considering non-encroached areas and areas encroached by shrubs (Cistus ladanifer L. or Cistus salviifolius L.).


The spatial heterogeneity of soil C and N contents was mainly associated with tree presence. Outside tree canopies, the labile C pools were larger (mainly beneath C. ladanifer) and C cycling was faster in encroached areas than in non-encroached areas. Net and gross N mineralization and urease and protease activities were also higher in encroached than in non-encroached areas; however, the metabolic quotient and the Cmicrobial/Corganic ratio were not significantly affected. Beneath the tree canopy, significant effects of encroachment included a small increase in soil labile C and the enzymatic activity beneath C. ladanifer.


The results indicate the potential capacity of shrub encroachment to accumulate soil organic C in the long term. The rate of soil C and N turnover promoted by shrub encroachment may depend on the Cistus species present.


15N isotope dilution technique Gross N mineralization Hot water-soluble C Particulate organic matter Soil respiration 



The study was conducted within the activities of the Centro de Estudos Florestais (FCT), Instituto Superior de Agronomia. Part of the funding for the isotopic ratio mass spectrometer was obtained from the European Regional Development Fund (EU). The first author is grateful to the Portuguese Science and Technology Foundation for financial support for this postdoctoral research (SFRH/BPD/27067/2006). We thank Paula Simões for assistance in sampling design and Paulo Marques for help with fieldwork. We also acknowledge laboratory staff in the Departamento de Ciências do Ambiente (Instituto Superior de Agronomia) for technical assistance with analytical work. The authors also thank Ana Carla Madeira for comments on the text of an earlier version of the manuscript.


  1. Bastida F, Talavera S (2002) Temporal and spatial patterns of seed dispersal in two Cistus species (Cistaceae). Ann Bot (Lond) 89:427–434. doi: 10.1093/aob/mcf065 CrossRefGoogle Scholar
  2. Belsky AJ, Amundson RG, Duxbury JM, Riha SJ, Ali AR, Mwonga SM (1989) The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. J App Ecol 26:1005–1024CrossRefGoogle Scholar
  3. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157. doi: 10.1890/04-0988 CrossRefGoogle Scholar
  4. Castells E, Peñuelas J (2003) Is there a feedback between N availability in siliceous and calcareous soils and Cistus albidus leaf chemical composition? Oecologia 136:183–192. doi: 10.1007/s00442-003-1258-8 PubMedCrossRefGoogle Scholar
  5. Chen J, Stark JM (2000) Plant species effects and carbon and nitrogen cycling in a Sagebrush-crested wheatgrass soil. Soil Biol Biochem 32:47–57. doi: 10.1016/S0038-0717(99)00124-8 CrossRefGoogle Scholar
  6. Cookson WR, Müller C, O’Brien PA, Murphy DV, Grierson PF (2006) Nitrogen dynamics in an Australian semiarid grassland soil. Ecology 87(8):2047–2057. doi: 10.1890/0012-9658(2006)87[2047:NDIAAS]2.0.CO;2 PubMedCrossRefGoogle Scholar
  7. Cubera E, Moreno G (2007) Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Ann For Sci 64:355–364. doi: 10.1051/forest:2007012 CrossRefGoogle Scholar
  8. Davidson EA, Stark JM, Firestone MK (1990) Microbial production and consumption of nitrate in an annual grassland. Ecology 71(5):1968–1975. doi: 10.2307/1937605 CrossRefGoogle Scholar
  9. Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis VP, Pilbeam DJ, Pisanelli A, Dupraz C (2006) Silvoarable systems in Europe—past, present and future prospects. Agroforest Syst 67:29–50. doi: 10.1007/s10457-005-1111-7 CrossRefGoogle Scholar
  10. Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoff-zustandes der Böden. II Chemische Extraktionmethod zur Phosphor-und Kaliumbestimmung. Kungl Lantbr Högsk Ann 26:199Google Scholar
  11. Escudero A, García B, Gómez JM, Luís E (1985) The nutrient cycling in Quercus rotundifolia and Quercus pyrenaica ecosystems (dehesas) of Spain. Acta Oecol 6:73–86Google Scholar
  12. Gallardo A, Rodríguez-Saucedo JJ, Covelo F, Fernández-Alés R (2000) Soil nitrogen heterogeneity in a Dehesa ecosystem. Plant Soil 222:71–82. doi: 10.1023/A:1004725927358 CrossRefGoogle Scholar
  13. Ghani A, Dexter M, Perrott KW (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243. doi: 10.1016/S0038-0717(03)00186-X CrossRefGoogle Scholar
  14. Gómez-Rey MX, Couto-Vázquez A, González-Prieto SJ (2012a) Nitrogen transformation rates and nutrient availability under conventional plough and conservation tillage. Soil Till Res 124:144–152. doi: 10.1016/j.still.2012.05.010 CrossRefGoogle Scholar
  15. Gómez-Rey MX, Garcês A, Madeira M (2012b) Soil organic C accumulation and N availability under improved pastures established in Mediterranean oak woodlands. Soil Use Manage 28:497–507. doi: 10.1111/j.1475-2743.2012.00428.x CrossRefGoogle Scholar
  16. Gómez-Rey MX, Garcês A, Madeira M (2011) Organic C distribution and N mineralization in soil of oak woodlands with improved pastures. Revista de Ciências Agrárias 34(1):80–92Google Scholar
  17. Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268. doi: 10.1016/S0065-2113(04)85005-3 CrossRefGoogle Scholar
  18. Herman DJ, Halverson LJ, Firestone M (2003) Nitrogen dynamics in an annual grassland: oak canopy, climate and microbial population effects. Ecol Appl 13(3):593–604. doi: 10.1890/1051-0761(2003)013[0593:NDIAAG]2.0.CO;2 CrossRefGoogle Scholar
  19. Howlett DS, Marcose MG, Mosquera-Losada MR, Nair PKR, Nair VD (2011) Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain. J Environ Monitor 13:1897–1904. doi: 10.1039/C1EM10059A CrossRefGoogle Scholar
  20. IFN (2006) Inventário Florestal Nacional (2005–2006). Divisão de Inventário e Estatísticas Florestais. Direcção Geral das Florestas, LisboaGoogle Scholar
  21. IUSS Working Group WRB (2006) World Reference Base for Soil Resources 2006. World Soil Resources Report, vol 103. FAO, RomeGoogle Scholar
  22. Kandeler E, Stemmer M, Klimanek EM (1999) Response of soil microbial biomass, ureaes and xylanase within particle size fraction to long-term soil management. Soil Biol Biochem 31:261–273. doi: 10.1016/S0038-0717(98)00115-1 CrossRefGoogle Scholar
  23. Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am J 18:33–34CrossRefGoogle Scholar
  24. Ladd JN, Butler JHA (1972) Short-term assay of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates. Soil Biol Biochem 4:19–39. doi: 10.1016/0038-0717(72)90038-7 CrossRefGoogle Scholar
  25. Llorente M, Turrión B (2010) Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur J Forest Res 129:73–81. doi: 10.1007/s10342-008-0249-z CrossRefGoogle Scholar
  26. Maestre FT, Puche MD, Guerrero C, Escudero A (2011) Shrub encroachment does not reduce the activity of some soil in Mediterranean semiarid grasslands. Soil Biol Biochem 43:1746–1749. doi: 10.1016/j.soilbio.2011.04.023 CrossRefGoogle Scholar
  27. Mariscal-Sancho I, Santano J, Mendiola MA, Peregrina F, Espejo R (2010) Carbon dioxide emission rates and Β-glucosidase activity in Mediterranean ultisols under different soil management. Soil Sci 175:453–460. doi: 10.1097/SS.0b013e3181f51704 CrossRefGoogle Scholar
  28. McCulley RL, Archer SR, Boutton TW, Hons FM, Zuberer DA (2004) Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology 85(10):2804–2817. doi: 10.1890/03-0645 CrossRefGoogle Scholar
  29. Moreno G, Obrador JJ (2007) Effects of trees and understory management on soil fertility and nutrient status of holm oaks in Spanish dehesas. Nutr Cycl Agroecosyst 78:253–264. doi: 10.1007/s10705-007-9089-3 CrossRefGoogle Scholar
  30. Moro MJ, Pugnaire FI, Haase P, Puigdefábregas J (1997) Mechanisms of interaction between a leguminous shrub understorey in a semi-arid environment. Ecography 20:175–184. doi: 10.1111/j.1600-0587.1997.tb00360.x CrossRefGoogle Scholar
  31. Nunes JMSD (2004) Interacção solo-árvore isolada em montados de azinho (Quercus rotundifolia Lam.): processos fundamentais. Ph D Dissertation. Universidade de Évora.Google Scholar
  32. Nunes J, Madeira M, Gazarini L, Neves J, Vicente H (2012) A data mining approach to improve multiple regression models of soil nitrate concentration predictions in Quercus rotundifolia montados (Portugal). Agroforest systems 84:89–100. doi: 10.1007/s10457-011-9416-1 CrossRefGoogle Scholar
  33. Pérez-Bejarano A, Mataix-Solera J, Zornoza R, Guerrero C, Arcenegui V, Mataix-Beneyto J, Cano-Amat S (2010) Influence of plant species on physical, chemical and biological soil properties in a Mediterranean forest soil. Eur J Forest Res 129:15–24. doi: 10.1007/s10342-008-0246-2 CrossRefGoogle Scholar
  34. Pérez-Devesa M, Cortina J, Milagrosa A, Vallejo R (2008) Shrubland management to promote Quercus suber L. establishment. For Ecol Manage 255:374–382. doi: 10.1016/j.foreco.2007.09.074 CrossRefGoogle Scholar
  35. Pinto-Correia T, Mascarenhas JA (1999) Contribution to the extensification/intensification debate: new trends in the Portuguese montado. Landscape Urban Plan 46:125–131. doi: 10.1016/S0169-2046(99)00036-5 CrossRefGoogle Scholar
  36. Plieninger T, Pulido FJ, Konold W (2003) Effects of land-use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration. Environ Conserv 30:61–70. doi: 10.1017/S03768929030 CrossRefGoogle Scholar
  37. Pulido FJ, Díaz M (2005) Regeneration of a Mediterranean oak: a whole-cycle approach. Ecoscience 12:92–102. doi: 10.2980/i1195-6860-12-1-92 CrossRefGoogle Scholar
  38. Pulido FJ, Díaz M, de Trucios SJ H (2001) Size structure and regeneration of Spanish holm oak Quercus ilex forest and dehesas: effects of agroforestry use on their long-term sustainability. For Ecol Manage 146:1–13. doi: 10.1016/S0378-1127(00)00443-6 CrossRefGoogle Scholar
  39. Reis RMM, Gonçalves MZ (1987) Clima de Portugal, Fascículo XXXIV. Caracterização climática da região agrícola do Alentejo. Instituto Nacional de Meteorología e Geofísica, LisboaGoogle Scholar
  40. Rivest D, Rolo V, López-Díaz ML, Moreno G (2011) Shrub encroachment in Mediterranean silvopastoral systems: Retama sphaerocarpa and Cistus ladanifer induce contrasting effects on pasture and Quercus ilex production. Agr Ecosyt Envir 141:447–454. doi: 10.1016/j.agee.2011.04.018 CrossRefGoogle Scholar
  41. Rovira P, Jorba M, Romanyá J (2010) Active and passive organic matter fractions in Mediterranean forest soils. Biol Fertil Soils 46:355–369. doi: 10.1007/s00374-009-0437-0 CrossRefGoogle Scholar
  42. Rutigliano FA, D’Ascoli R, Virzo De Santo A (2004) Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biol Biochem 36:1719–1729. doi: 10.1016/j.soilbio.2004.04.029 CrossRefGoogle Scholar
  43. Sá C, Madeira M, Gazarini L (2001) Produção e decomposição da folhada de Quercus suber L. Revista de Ciências Agrárias 24(3, 4):245–256Google Scholar
  44. Silva de Sá CMM (2001) Influência do coberto arbóreo (Quercus suber L.) em processos ecofisiológicos da vegetação herbácea em áreas de montado. Ph D Dissertation, Universidade de ÉvoraGoogle Scholar
  45. Silva JS, Rego FC, Martins-Loução MA (2003) Root distribution of Mediterranean woody plants. Introducing a new experimental model. Plant Biosystems 137:63–72. doi: 10.1080/11263500312331351341 CrossRefGoogle Scholar
  46. Simões MP (2002). Dinâmica de biomassa (carbono) e nutrientes em Cistus salvifolius L. e Cistus ladanifer L.. Influência nas características do solo. Ph D Dissertation, Universidade de ÉvoraGoogle Scholar
  47. Simões MP, Madeira M, Gazarini L (2008) The role of phenology, growth and nutrient retention during leaf fall in the competitive potential of two species of Mediterranean shrubs in the context of global climate changes. Flora 203:578–589. doi: 10.1016/j.flora.2007.09.008 CrossRefGoogle Scholar
  48. Simões MP, Madeira M, Gazarini L (2009) (2009) Ability of Cistus L. shrubs to promote soil rehabilitation in extensive oak woodlands of Mediterranean areas. Plant Soil 323:249–265. doi: 10.1007/s11104-009-9934-z CrossRefGoogle Scholar
  49. Simões MP, Madeira M, Gazarini L (2012) Biomass and nutrient dynamics in Mediterranean seasonal dimorphic shrubs: strategies to face environmental constraints. Plant Biosystems 146:500–510. doi: 10.1080/11263504.2012.661798 Google Scholar
  50. Springsteen A, Loya W, Liebig M, Hendrickson J (2010) Soil carbon and nitrogen across a chronosequence of woody plant expansion in North Dakota. Plant Soil 328:369–379. doi: 10.1007/s11104-009-0117-8 CrossRefGoogle Scholar
  51. Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. ASA, SSAJ, Wisconsin, pp 903–947Google Scholar
  52. Tárrega R, Calvo L, Taboada A, García-Tejero S, Marcos E (2009) Abandonment and management in Spanish dehesa systems: effects on soil features and plant species richness and composition. For Ecol Manage 257:731–738CrossRefGoogle Scholar
  53. Thomas GW (1982) Exchangeable cations. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Chemical and microbiological properties, 2nd edn. ASA, SSAJ, Wisconsin, pp 159–165Google Scholar
  54. Vance PC, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  55. Waldrop MP, Firestone MK (2006) Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb Ecol 52:470–479. doi: 10.1007/s00248-006-9100-6 PubMedCrossRefGoogle Scholar
  56. Zhao M, Zhou J, Kalbitz K (2008) Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China. Eur J Soil Biol 44:158–165. doi: 10.1016/j.ejsobi.2007.09.007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • María Xesús Gómez-Rey
    • 1
    Email author
  • Manuel Madeira
    • 1
  • Serafin Jesús Gonzalez-Prieto
    • 2
  • João Coutinho
    • 3
  1. 1.Centro de Estudos Florestais, Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisbonPortugal
  2. 2.Instituto de Investigaciones Agrobiológicas de Galicia, IIAG-CSICSantiago de CompostelaSpain
  3. 3.Dpto Biologia e Ambiente, Centro de QuímicaUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations