Skip to main content

Advertisement

Log in

Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

We carried out field experiments to investigate if an agricultural grassland mixture comprising shallow- (perennial ryegrass: Lolium perenne L.; white clover: Trifolium repens L.) and deep- (chicory: Cichorium intybus L.; Lucerne: Medicago sativa L.) rooting grassland species has greater herbage yields than a shallow-rooting two-species mixture and pure stands, if deep-rooting grassland species are superior in accessing soil 15N from 1.2 m soil depth compared with shallow-rooting plant species and vice versa, if a mixture of deep- and shallow-rooting plant species has access to greater amounts of soil 15N compared with a shallow-rooting binary mixture, and if leguminous plants affect herbage yield and soil 15N-access.

Methods

15N-enriched ammonium-sulphate was placed at three different soil depths (0.4, 0.8 and 1.2 m) to determine the depth dependent soil 15N-access of pure stands, two-species and four-species grassland communities.

Results

Herbage yield and soil 15N-access of the mixture including deep- and shallow-rooting grassland species were generally greater than the pure stands and the two-species mixture, except for herbage yield in pure stand lucerne. This positive plant diversity effect could not be explained by complementary soil 15N-access of the different plant species from 0.4, 0.8 and 1.2 m soil depths, even though deep-rooting chicory acquired relatively large amounts of deep soil 15N and shallow-rooting perennial ryegrass when grown in a mixture relatively large amounts of shallow soil 15N. Legumes fixed large amounts of N2, added and spared N for non-leguminous plants, which especially stimulated the growth of perennial ryegrass.

Conclusions

Our study showed that increased plant diversity in agricultural grasslands can have positive effects on the environment (improved N use may lead to reduced N leaching) and agricultural production (increased herbage yield). A complementary effect between legumes and non-leguminous plants and increasing plant diversity had a greater positive impact on herbage yield compared with complementary vertical soil 15N-access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Braun M, Schmid H, Grundler T, Hülsbergen KJ (2010) Root-and-shoot growth and yield of different grass-clover mixtures. Plant Biosystems 144:414–419

    Article  Google Scholar 

  • Brown HE, Moot DJ, Pollock KM (2005) Herbage production, persistence, nutritive characteristics and water use of perennial forages grown over 6 years on a Wakanui silt loam. N Z J Agric Res 48:423–439

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  PubMed  CAS  Google Scholar 

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Certified Crop Advisor (2012) http://nrcca.cals.cornell.edu/soil/CA2/CA0212.1-3.php. Cornell University. Accessed 29 November 2012

  • Chalk PM (1998) Dynamics of biologically fixed N in legume-cereal rotations: a review. Aust J Agric Res 49:303–316

    Article  CAS  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297

    Article  Google Scholar 

  • De Boeck HJ, Lemmens CMHM, Bossuyt H, Malchair S, Carnol M, Merckx R, Nijs I, Ceulemans R (2006) How do climate warming and plant species richness affect water use in experimental grasslands? Plant Soil 288:249–261

    Article  Google Scholar 

  • De Vries FT, Bloem J, Quirk H, Stevens CJ, Bol R, Bardgett RD (2012) Extensive management promotes plant and microbial nitrogen retention in temperate grassland. PLoS One 7

  • Fitter AH (1986) Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia 69:594–599

    Article  Google Scholar 

  • Frankow-Lindberg BE, Brophy C, Collins RP, Connolly J (2009) Biodiversity effects on yield and unsown species invasion in a temperate forage ecosystem. Ann Bot 103:913–921

    Article  PubMed  CAS  Google Scholar 

  • Fried M, Middleboe V (1977) Measurement of the amount of nitrogen fixed by a legume crop. Plant Soil 47:713–715

    Article  CAS  Google Scholar 

  • Hansen S, Storm B, Jensen HE (1986) Spatial variability of soil physical properties. Theoretical and experimental analyses. Part I: Soil sampling, experimental analyses and basic statistics of soil physical properties. Department of Soil and Water and Plant Nutrition, Report No. 1201, RVAU, Copenhagen. ISSN: 0901–5302

  • Hardarson G, Danso SKA (1990) Use of 15N methodology to assess biological nitrogen fixation. In: Hardarson G (ed) Use of nuclear techniques in studies of soil-plant relationships. International Atomic Energy Agency, Vienna, pp 129–160

    Google Scholar 

  • Hardarson G, Danso SKA, Zapata F (1988) Dinitrogen fixation measurements in alfalfa-ryegrass swards using N-15 and influence of the reference crop. Crop Sci 28:101–105

    Article  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Hector A, Bazeley-White E, Loreau M et al (2002) Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecol Lett 5:502–511

    Article  Google Scholar 

  • Høgh-Jensen H, Schjoerring IK (1997) Interactions between white clover and ryegrass under contrasting nitrogen availability: N-2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant Soil 197:187–199

    Article  Google Scholar 

  • Høgh-Jensen H, Nielsen B, Thamsborg SM (2006) Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. Eur J Agron 24:247–256

    Article  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  Google Scholar 

  • Jumpponen A, Hogberg P, Huss-Danell K, Mulder CPH (2002) Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands. Funct Ecol 16:454–461

    Article  Google Scholar 

  • Kirwan L, Luescher A, Sebastia MT, Finn JA, Collins RP, Porqueddu C, Helgadottir A, Baadshaug OH, Brophy C, Coran C, Dalmannsdottir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Golinski P, Grieu P, Gustavsson AM, Hoglind M, Huguenin-Elie O, Iliadis C, Jorgensen M, Kadziuliene Z, Karyotis T, Lunnan T, Malengier M, Maltoni S, Meyer V, Nyfeler D, Nykanen-Kurki P, Parente J, Smit HJ, Thumm U, Connolly J (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539

    Article  Google Scholar 

  • Kristensen HL, Thorup-Kristensen K (2004) Root growth and nitrate uptake of three different catch crops in deep soil layers. Soil Sci Soc Am J 68:529–537

    Article  CAS  Google Scholar 

  • Kutschera L, Lichtenegger E (1982) Wurzelatlas mitteleuropäischer Grünlandpflanzen. Band 1, Monocotyldoneae. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Kutschera L, Lichtenegger E (1992) Wurzelatlas mitteleuropäischer Grünlandpflanzen, Bd. 2: Pteridophyta und Dicotyledoneae (Magnoliopsida). Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Mommer L, van Ruijven J, de Caluwe H, Smit-Tiekstra AE, Wagemaker CAM, Ouborg NJ, Bogemann GM, van der Weerden GM, Berendse F, de Kroon H (2010) Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. J Ecol 98:1117–1127

    Article  Google Scholar 

  • Moore KJ (2003) Compendium of common forages. In: Barnes RF, Nelson CJ, Collins M, Moore KJ (eds) Forages: an introduction to grassland agriculture, 6th edn. Iowa State University Press, Iowa, pp 237–238

    Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737

    Article  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Lüscher A (2009) Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J Appl Ecol 46:683–691

    Article  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Matthias S, Frossard E, Lüscher A (2011) Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140:155–163

    Article  Google Scholar 

  • Palmborg C, Scherer-Lorenzen M, Jumpponen A, Carlsson G, Huss-Danell K, Högberg P (2005) Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos 110:271–282

    Article  CAS  Google Scholar 

  • Paynel F, Lesuffleur F, Bigot J, Diquelou S, Cliquet JB (2008) A study of N-15 transfer between legumes and grasses. Agron Sustain Dev 28:281–290

    Article  CAS  Google Scholar 

  • Peoples MB, Faizah AW, Rerkasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Centre for International Agricultural Research. Canberra, Australia

    Google Scholar 

  • Picasso VD, Brummer EC, Liebman M, Dixon PM, Wilsey BJ (2008) Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Sci 48:331–342

    Article  Google Scholar 

  • Pirhofer-Walzl K, Jim Rasmussen J, Høgh-Jensen H, Eriksen J, Søegaard K, Rasmussen J (2012) Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 350:71–84

    Article  CAS  Google Scholar 

  • Pollock KM, Mead D (2008) Influence of pasture understoreys and tree management on soil moisture under a young New Zealand stand of Pinus radiata. Plant Soil 310:181–199

    Article  CAS  Google Scholar 

  • Powlson DS, Barraclough D (1993) Mineralization and assimilation in soil-plant systems. In: Knowles R, Blackburn TH (eds) Nitrogen isotope techniques. Academic, California, pp 209–242

    Google Scholar 

  • Rasmussen J, Søegaard K, Pirhofer-Walzl K, Eriksen J (2012) N2-fixation and residual N effect of four legume species and four companion grass species. Eur J Agron 36:66–74

    Article  CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. http://www.R-project.org

  • Roscher C, Thein S, Schmid B, Scherer-Lorenzen M (2008) Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. J Ecol 96:477–488

    Article  Google Scholar 

  • Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze ED (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–1552

    Article  Google Scholar 

  • Schnitzer SA, Klironomos JN, HillerRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, Van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303

    Article  PubMed  Google Scholar 

  • Skinner RH (2008) Yield, root growth, and soil water content in drought-stressed pasture mixtures containing chicory. Crop Sci 48:380–388

    Article  Google Scholar 

  • Thorup-Kristensen K (2006) Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant Soil 288:233–248

    Article  CAS  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P (2002) Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives, 1st edn. Oxford University Press, Oxford, pp 21–35

    Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • van Ruijven J, Berendse F (2003) Positive effects of plant species diversity on productivity in the absence of legumes. Ecol Lett 6:170–175

    Article  Google Scholar 

  • von Felten S, Schmid B (2008) Complementarity among species in horizontal versus vertical rooting space. Journal of Plant Ecology-UK 1:33–41

    Article  Google Scholar 

  • von Felten S, Hector A, Buchmann N, Niklaus P, Schmid B, Scherer-Lorenzen M (2009) Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90:1389–1399

    Article  Google Scholar 

  • von Felten S, Niklaus PA, Scherer-Lorenzen M, Hector A, Buchmann N (2012) Do grassland plant communities profit from N partitioning by soil depth? Ecology 93:2386–2396

    Article  Google Scholar 

  • Whitehead DC (1995) Grassland nitrogen. CABI Publishing, Wallingford

    Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Muller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Anders Nørgaard, Morten Lykkebo, Britta Garly Henriksen and Allan Esben Hansen for technical and practical support and Anja Hecht-Ivø for help with the 15N-analyses. Additionally, we are grateful to James Dorson for revising the English of a previous version of this manuscript. We would also like to thank two anonymous reviewers for their valuable comments. Funding was provided by the International Centre for Research in Organic Food Systems (ICROFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pirhofer-Walzl.

Additional information

Responsible Editor: Duncan D. Cameron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirhofer-Walzl, K., Eriksen, J., Rasmussen, J. et al. Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands. Plant Soil 371, 313–325 (2013). https://doi.org/10.1007/s11104-013-1694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1694-0

Keywords

Navigation