Plant and Soil

, Volume 371, Issue 1–2, pp 397–408 | Cite as

Assessment of the relationship between geologic origin of soil, rhizobacterial community composition and soil receptivity to tobacco black root rot in Savoie region (France)

  • Juliana Almario
  • Martina Kyselková
  • Jan Kopecký
  • Markéta Ságová-Marečková
  • Daniel Muller
  • Geneviève L. Grundmann
  • Yvan Moënne-Loccoz
Regular Article


Background and aims

In Morens (Switzerland), soils formed on morainic deposits (which contain vermiculite clay and display particular tobacco rhizobacterial community) are naturally suppressive to Thielaviopsis basicola-mediated tobacco black root rot, but this paradigm was never assessed elsewhere. Here, we tested the relation between geology and disease suppressiveness in neighboring Savoie (France).


Two morainic and two sandstone soils from Savoie were compared based on disease receptivity (T. basicola inoculation tests on tobacco), clay mineralogy (X-ray diffraction), tobacco rhizobacterial community composition (16S rRNA gene-based taxonomic microarray) and phlD + Pseudomonas populations involved in 2,4-diacetylphloroglucinol production (real-time PCR and tRFLP).


Unlike in Morens, in Savoie the morainic soils were receptive to disease whereas T. basicola inoculation did not increase disease level in the sandstone soils. Vermiculite was not present in Savoie soils. The difference in rhizobacterial community composition between Savoie morainic and sandstone soils was significant but modest, and there was little agreement in bacterial taxa discriminating soils of different disease receptivity levels when comparing Morens versus Savoie soils. Finally, phlD + rhizosphere pseudomonads were present at levels comparable to those in Morens soils, but with different diversity patterns.


The morainic model of black root rot suppressiveness might be restricted to the particular type of moraine occurring in the Morens region, and the low disease receptivity of sandstone soils in neighboring Savoie might be related to other plant-protection mechanisms.


Suppressive soil Thielaviopsis basicola Black root rot Moraine Rhizosphere Bacterial community 16S microarray real-time PCR 2,4-diacetylphloroglucinol 



This work was supported by CORESTA (Paris, France), the ECO-NET network 10228TF (EGIDE, Paris, France), the Ministry of Education, Youth and Sports of the Czech Republic (project Kontakt ME09077), and the Ministère Français de la Recherche. We are grateful to G. Nicoud (Université de Savoie, Le Bourget du Lac, France) for help with geomorphology and L. Roger (UMR SeqBio, SupAgro, Montpellier, France) with clay analysis. We thank L. Jocteur-Monrozier, J. Haurat (UMR CNRS 5557 Ecologie Microbienne), D. Desbouchage (IFR 41), J. Bernillon (DTAMB) and C. Oger (DTAMB/PRABI) for technical help and/or discussion. This work made use of the IFR41 platforms Serre, DTAMB and PRABI.

Supplementary material

11104_2013_1677_MOESM1_ESM.ppt (4.8 mb)
Fig. S1 Geographic locations of Seyssel and Albens in Savoie, compared with that of Morens (Switzerland) (A), and location on IGN/BRGM geological maps ( of the Savoie soils Ymo4 (moraine) and Ysa5 (sandstone) near Seyssel (B), and Amo1 (moraine) and Asa2 (sandstone) near Albens (C). (PPT 4.79 MB)
11104_2013_1677_MOESM2_ESM.ppt (176 kb)
Fig. S2 Principal component analysis (PCA) of rhizobacterial communities from Thielaviopsis basicola-inoculated (full symbols) and non-inoculated (empty symbols) samples, based on microarray probe signals. Data are shown as means and standard errors of sample positions. (A) Comparison of Savoie sandstone (Asa2 and Ysa5) and morainic (Amo1 and Ymo4) soils. Principal components PC1 and PC2 corresponded to respectively 29 % and 13 % data variation. The treatments could not be statistically distinguished in the PCA ordination plot. (B) Comparison of Savoie sandstone (Asa2 and Ysa5) and morainic (Amo1 and Ymo4) soils, along with data obtained previously under the same conditions for two Morens soils (i.e. suppressive morainic soil MS8 and conducive sandstone soil MC112; Kyselková et al. 2009), which were cropped with wheat (MS8) and mixed pasture (MC112) at the time of sampling. Principal components PC1 and PC2 corresponded to respectively 30 % and 10 % data variation. Differences between treatments are shown using letters AB along axis PCA1 and a-d along axis PCA2 (ANOVA and Fisher LSD tests; P < 0.05) (PPT 172 kb)
11104_2013_1677_MOESM3_ESM.pdf (40 kb)
ESM 3 (PDF 40 kb)


  1. Agrios GN (1997) Plant pathology. Academic, San DiegoGoogle Scholar
  2. Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Austr Plant Pathol 28:57–64CrossRefGoogle Scholar
  3. Alabouvette C, Steinberg C (2006) The soil as a reservoir for antagonists to plant diseases. In: Eilenberg J, Hokkanen HMT (eds) An ecological and societal approach to biological control. Springer, Dordrecht, pp 123–144CrossRefGoogle Scholar
  4. Almario J, Moënne-Loccoz Y, Muller D (2013) Monitoring of the relation between 2,4-diacetylphloroglucinol-producing Pseudomonas and Thielaviopsis basicola populations by real-time PCR in tobacco black root-rot suppressive and conducive soils. Soil Biol Biochem 57:144–155CrossRefGoogle Scholar
  5. Baker KF, Cook RJ (1974) Biological control of plant pathogens. The American Phytopathological Society, San FranciscoGoogle Scholar
  6. Barré P, Velde B, Catel N, Abbadie L (2007) Soil-plant potassium transfer: impact of plant activity on clay minerals as seen from X-ray diffraction. Plant Soil 292:137–146CrossRefGoogle Scholar
  7. Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA (1992) Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol 58:3413–3416PubMedGoogle Scholar
  8. Day PR (1965) Particle fractionation and particle-size analysis. In: Black CA (ed) Methods of soil analysis. Academic Press Inc, New York, pp 545–567Google Scholar
  9. Föllmi KB, Arn K, Hosein R, Adatte T, Steinmann P (2009) Biogeochemical weathering in sedimentary chronosequences of the Rhône and Oberaar Glaciers (Swiss Alps): rates and mechanisms of biotite weathering. Geoderma 151:270–281CrossRefGoogle Scholar
  10. Frapolli M, Défago G, Moënne-Loccoz Y (2007) Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp. producing the antifungal compound 2,4-diacetylphloroglucinol. Environ Microbiol 9:1939–1955PubMedCrossRefGoogle Scholar
  11. Frapolli M, Moënne-Loccoz Y, Meyer J, Défago G (2008) A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. FEMS Microbiol Ecol 64:468–481PubMedCrossRefGoogle Scholar
  12. Frapolli M, Défago G, Moënne-Loccoz Y (2010) Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco. Soil Biol Biochem 42:649–656CrossRefGoogle Scholar
  13. Fulthorpe RR, Roesch LFW, Riva A, Triplett EW (2008) Distantly sampled soils carry few species in common. ISME J 2:901–910PubMedCrossRefGoogle Scholar
  14. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270PubMedCrossRefGoogle Scholar
  15. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedCrossRefGoogle Scholar
  16. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. Eur J Soil Sci 44:525–534CrossRefGoogle Scholar
  18. Hughes Martiny JB, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112CrossRefGoogle Scholar
  19. Johnson LJ (1970) Clay minerals in Pennsylvania soils. Relation to lithology of the parent rock and other factors-I. Clays Clay Miner 18:247–260CrossRefGoogle Scholar
  20. Keel C, Voisard C, Berling CH, Kahr G, Défago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root-rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584–589CrossRefGoogle Scholar
  21. Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marečková M, Grundmann GL, Moënne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease with a 16S rRNA gene-based taxonomic microarray. ISME J 3:1127–1138PubMedCrossRefGoogle Scholar
  22. Lucas P, Sarniguet A (1998) Biological control of soilborne pathogens with resident versus introduced antagonists: should diverging approaches become strategic convergence? In: Barbosa P (ed) Conservation biological control. Academic, London, pp 351–370CrossRefGoogle Scholar
  23. Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461CrossRefGoogle Scholar
  24. Meyer JR, Shew HD (1991) Soils suppressive to black root rot of burley tobacco, caused by Thielaviopsis basicola. Phytopathology 81:946–954CrossRefGoogle Scholar
  25. Murakami H, Tsushima S, Shishido Y (2000) Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biol Biochem 32:1637–1642CrossRefGoogle Scholar
  26. Persson L, Larsson-Wikstrom M, Gerhardson B (1999) Assessment of soil suppressiveness to Aphanomyces root rot of pea. Plant Dis 83:1108–1112CrossRefGoogle Scholar
  27. Ramette A, Moënne-Loccoz Y, Défago G (2003) Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiol Ecol 44:35–43PubMedCrossRefGoogle Scholar
  28. Ramette A, Moënne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381PubMedCrossRefGoogle Scholar
  29. Rimé D, Nazaret S, Gourbière F, Cadet P, Moënne-Loccoz Y (2003) Comparison of sandy soils suppressive or conducive to ectoparasitic nematode damage on sugarcane. Phytopathology 93:1437–1444PubMedCrossRefGoogle Scholar
  30. Salles JF, van Veen JA, van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70:4012–4020PubMedCrossRefGoogle Scholar
  31. Sanguin H, Herrera A, Oger-Desfeux C, Dechesne A, Simonet P, Navarro E, Vogel TM, Moënne-Loccoz Y, Nesme X, Grundmann GL (2006a) Development and validation of a prototype 16S rRNA-based taxonomic microarray for Alphaproteobacteria. Environ Microbiol 8:289–307PubMedCrossRefGoogle Scholar
  32. Sanguin H, Kroneisen L, Gazengel K, Kyselková M, Remenant B, Prigent-Combaret C, Grundmann GL, Sarniguet A, Moënne-Loccoz Y (2008) Development of a 16S rRNA microarray approach for the monitoring of rhizosphere Pseudomonas populations associated with the decline of take-all disease of wheat. Soil Biol Biochem 40:1028–1039CrossRefGoogle Scholar
  33. Sanguin H, Remenant B, Dechesne A, Thioulouse J, Vogel TM, Nesme X, Moënne-Loccoz Y, Grundmann GL (2006b) Potential of a 16S rRNA-based taxonomic microarray for analyzing the rhizosphere effects of maize on Agrobacterium spp. and bacterial communities. Appl Environ Microbiol 72:4302–4312PubMedCrossRefGoogle Scholar
  34. Shiomi Y, Nishiyama M, Onizuka T, Marumoto T (1999) Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl Environ Microbiol 65:3996–4001PubMedGoogle Scholar
  35. Siregar A, Kleber M, Mikutta R, Jahn R (2005) Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. Eur J Soil Sci 56:481–490CrossRefGoogle Scholar
  36. Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 6:347–363PubMedCrossRefGoogle Scholar
  37. Stutz E, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185CrossRefGoogle Scholar
  38. Stutz E, Kahr G, Défago G (1989) Clays involved in suppression of tobacco black root rot by a strain of Pseudomonas fluorescens. Soil Biol Biochem 21:361–366CrossRefGoogle Scholar
  39. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83CrossRefGoogle Scholar
  40. Ulrich A, Becker R (2006) Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol 56:430–443PubMedCrossRefGoogle Scholar
  41. van Elsas JD, Garbeva P, Salles J (2002) Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation 13:29–40PubMedCrossRefGoogle Scholar
  42. Voisard C, Keel C, Haas D, Défago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress back root-rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedGoogle Scholar
  43. von Eynatten H (2003) Petrography and chemistry of sandstones from the Swiss Molasse Basin: an archive of the Oligocene to Miocene evolution of the Central Alps. Sedimentology 50:703–724CrossRefGoogle Scholar
  44. von Felten A, Meyer JB, Défago G, Maurhofer M (2011) Novel T-RFLP method to investigate six main groups of 2,4-diacetylphloroglucinol-producing pseudomonads in environmental samples. J Microbiol Meth 84:379–387CrossRefGoogle Scholar
  45. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256PubMedCrossRefGoogle Scholar
  46. Yergeau E, Bezemer TM, Hedlund K, Mortimer SR, Kowalchuk GA, van der Putten WH (2010) Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils. Environ Microbiol 12:2096–2106PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Juliana Almario
    • 1
    • 2
    • 3
  • Martina Kyselková
    • 1
    • 2
    • 3
    • 4
  • Jan Kopecký
    • 5
  • Markéta Ságová-Marečková
    • 5
  • Daniel Muller
    • 1
    • 2
    • 3
  • Geneviève L. Grundmann
    • 1
    • 2
    • 3
  • Yvan Moënne-Loccoz
    • 1
    • 2
    • 3
  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1VilleurbanneFrance
  3. 3.CNRS, UMR5557, Ecologie MicrobienneVilleurbanneFrance
  4. 4.Biology Centre of the Academy of Sciences of the Czech RepublicInstitute of Soil BiologyČeské BudějoviceCzech Republic
  5. 5.Department of Plant PathologyCrop Research InstitutePraha-RuzyněCzech Republic

Personalised recommendations