Effects of simultaneous arsenic and iron toxicities on rice (Oryza sativa L.) development, yield-related parameters and As and Fe accumulation in relation to As speciation in the grains

Abstract

Background and aim

In numerous areas, rice cultivated under flooded conditions is exposed simultaneously to iron excess and arsenic contamination. The impact of these combined stresses on yield-related parameters and As distribution and speciation in various plant parts remains poorly documented.

Methods

Rice (cv I Kong Pao) was exposed to iron excess (125 mg L−1 Fe2SO4), arsenic (50 and 100 μM Na2HAsO4.7H2O) or a combination of those stressing agents in hydroponic culture until harvest. Plant growth, yield-related parameters, non protein thiols concentration and mineral nutrition were studied in roots and shoots. Arsenic speciation was determined by high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry.

Key Results

Iron excess increased As retention by the roots in relation to the development of the root iron plaque but decreased As accumulation in the shoot. Arsenic concentration was lower in the grains than in the shoots. Iron stress reduced As accumulation in the husk but not in the dehusked grains. Iron excess decreased the proportion of extractable As(III) and As(V) in the grain while it increased the proportion of extractable As(III) in the shoot. Combined stresses (Fe+As) affected plant nutrition and significantly reduced the plant yield by limiting the number of grains per plant and the grain filling.

Conclusions

Fe excess had an antagonist impact on shoot As concentration but an additive negative impact on several yield-related parameters. Iron stress influences both As distribution and As speciation in rice.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Asch F, Becker M, Kpongor DS (2005) A quick and efficient screen for resistance to iron toxicity in lowland rice. J Plant Nutr and Soil Sci 168:764–773

    Article  CAS  Google Scholar 

  2. Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122

    PubMed  CAS  Google Scholar 

  3. Bhattacharya P, Samal AC, Majumbar J, Santra SC (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8:63–70

    Article  Google Scholar 

  4. Becker M, Asch F (2005) Iron toxicity in rice-conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  5. Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654

    PubMed  Article  CAS  Google Scholar 

  6. Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ 217:189–199

    Article  CAS  Google Scholar 

  7. Carey A-M, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg A (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    PubMed  Article  CAS  Google Scholar 

  8. Carey A-M, Lombi E, Donner E, de Jonge MD, Punshon T, Jackson BP, Guerinot ML, Price AH, Meharg AA (2012) A review of recent devopments in the speciation and location of arsenic and selenium in rice grain. Anal Bioanal Chem 402:3275–3286

    PubMed  Article  CAS  Google Scholar 

  9. Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    PubMed  Article  CAS  Google Scholar 

  10. Chen Z, Zhu YG, Liu WJ, Meharg AA (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165:91–97

    PubMed  Article  CAS  Google Scholar 

  11. Dameron CT, Reese RN, Mehra RK, Kortan AR (1989) Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  12. de Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutr 28:1–20

    Article  Google Scholar 

  13. Delfosse T, Delmelle P, Givron C, Delvaux B (2005) Inorganic sulphate extraction from SO2-impacted Andosols. Europ J Soil Sci 56:127–133

    Article  CAS  Google Scholar 

  14. Deng D, Wu S-C, Wu Y, Deng H, Wong M-H (2010) Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environ Poll 158:2589–2595

    Article  CAS  Google Scholar 

  15. De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubatus. Plant Physiol 98:853–858

    PubMed  Article  Google Scholar 

  16. Fageria NK, Santosa AB, Barbosa Filhoa MP, Guimarãesa CM (2008) Iron toxicity in lowland rice. J Plant Nutr 31:1676–1697

    Article  CAS  Google Scholar 

  17. Feng R, Wei C, Tu S, Tang S, Wu F (2011) Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions. Mikrochem J 97:38–43

    Article  CAS  Google Scholar 

  18. Garnier J-M, Travassac F, Lenoble V, Rose J, Zheng Y, Hossain MS, Chowdhury SH, Biswas AK, Ahmed KM, Cheng Z, van Geen A (2010) Temporal variations in arsenic uptake by rice plants in Bangladesh; the role of iron plaque in paddy fields irrigated with groundwater. Sci Total Environ 408:4185–4193

    PubMed  Article  CAS  Google Scholar 

  19. Ghanem ME, van Elteren J, Albacete A, Quinet M, Martinéz-Andújar C, Kinet JM, Perez-Alfocea F, Lutts S (2009) Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicum) in relation to a heterogeneous distribution of toxic ions in flowers organs. Funct Plant Biol 36:125–136

    Article  CAS  Google Scholar 

  20. Hansel CM, La Force MJ, Fendorf S, Sutton S (2002) Spatial and temporal association of as and fe species on aquatic plant roots. Environ Sci Technol 36:1988–1994

    PubMed  Article  CAS  Google Scholar 

  21. Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    PubMed  Article  CAS  Google Scholar 

  22. Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  23. Hossain M, Islam MR, Jahiruddin M, Abedin A, Islam S, Meharg AA (2007) Effects of arsenic-contaminated irrigation water on growth, yield, and nutrient concentration in rice. Commun Soil Sci Plant Anal 39:302–313

    Article  Google Scholar 

  24. Hossain M, Jahiruddin M, Loeppert R, Panaullah G, Islam M, Duxbury J (2009) The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176

    Article  CAS  Google Scholar 

  25. Hu Y, Li J, Zhu Y, Huang Y, Hu H, Christie P (2005) Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer. Environ Geochem Health 27:169–176

    PubMed  Article  CAS  Google Scholar 

  26. Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176:709–714

    Article  CAS  Google Scholar 

  27. Jeong J, Guerinot ML (2008) Biofortified and bioavailable: the gold standard for plant-base diets. Proc Nat Acad Sci USA 105:1777–1778

    PubMed  Article  CAS  Google Scholar 

  28. Kerkeb L, Connolly EL (2006) Iron transport and metabolism in plants. Genet Eng 27:119–139

    Article  CAS  Google Scholar 

  29. Krämer U, Talke I, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    PubMed  Article  Google Scholar 

  30. Lee CH, Hsieh YC, Lin TH, Lee DY (2013) Iron plaque formation and its effect on arsenic uptake by different genotypes of rice. Plant Soil 363:231–241

    Article  CAS  Google Scholar 

  31. Liu W, Zhu YG, Smith FA, Smith SE (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oyza sativa L.) grown in solution culture? J Exp Bot 55:1707–1713

    PubMed  Article  CAS  Google Scholar 

  32. Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JN, Smith FA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736

    PubMed  Article  CAS  Google Scholar 

  33. Lombi E, Scheckel KG, Pallon J, Carey AM, Zhu YG, Meharg AA (2009) Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol 184:193–201

    PubMed  Article  CAS  Google Scholar 

  34. Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    PubMed  Article  CAS  Google Scholar 

  35. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Nat Acad Sci USA 105:9931–9935

    PubMed  Article  CAS  Google Scholar 

  36. Majerus V, Bertin P, Lutts S (2007) Effects of iron toxicity on osmotic potential, osmolytes and polyamines concentrations in the African rice (Oryza glaberrima Steud.). Plant Sci 173:96–105

    Article  CAS  Google Scholar 

  37. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  38. Mir KA, Rutter A, Koch I, Smith P, Reimer KJ, Poland JS (2007) Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta 72:1507–1518

    PubMed  Article  CAS  Google Scholar 

  39. Moore KL, Schröder M, Wu ZC, Martin BGH, Hawes CR, McGrath SP, Hawkesford MJ, Ma JF, Zhao FJ, Grovenor CRM (2011) High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in roce roots. Plant Physiol 156:913–924

    PubMed  Article  CAS  Google Scholar 

  40. Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963

    PubMed  Article  CAS  Google Scholar 

  41. Panaullah G, Alam T, Hossain M, Loeppert R, Lauren J, Meisner C, Ahmed ZU, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31–39

    Article  CAS  Google Scholar 

  42. Quinet M, Vromman D, Clippe A, Bertin P, Lequeux H, Dufey I, Lutts S, Lefèvre I (2012) Combined transcriptomic and physiological approaches reveal strong differences between short and long term response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ 35:1837–1859

    PubMed  Article  CAS  Google Scholar 

  43. Rahman MA, Hasegawa H (2011) High levels of inorganic arsenic in rice in areas where arsenic-contamined water is used for irrigation and cooking. Sci Total Environ 409:4645–4655

    PubMed  Article  CAS  Google Scholar 

  44. Rahman MA, Rahman MM, Kadohashi K, Maki T, Hasegawa H (2011) Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.). Chemosphere 84:439–445

    PubMed  Article  Google Scholar 

  45. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    PubMed  Article  CAS  Google Scholar 

  46. Reese RN, White CA, Wing DR (1992) Cadmium-sulfide crystallites in Cd-gamma-ECnG peptide complexes from tomato. Plant Physiol 98:225–229

    PubMed  Article  CAS  Google Scholar 

  47. Sahrawat KL (2004) Iron toxicity in wetland rice and the role of other nutrients. J Plant Nutr 27:1471–1504

    Article  CAS  Google Scholar 

  48. Seyfferth AL, Webbs SM, Andrews JC, Fendorf S (2011) Defining the distribution of arsenic species and plant nutrients in rice (Oryza sativa L.) from the root to the grain. Geochem Cosmochim Acta 75:6655–6671

    Article  CAS  Google Scholar 

  49. Shaibur MR, Kitajima N, Sugawara R, Kondo T, Huq SMI, Kawai S (2006) Physiological and mineralogical properties of arsenic-induced chlorosis in rice seedlings grown hydroponically. Soil Sci Plant Nutr 52:691–700

    Article  CAS  Google Scholar 

  50. Šlejkovec Z, Van Elteren JT (1999) Determination of arsenic compounds in reference materials by HPLC-UV-HGAFS. Talanta 49:619–627

    PubMed  Article  Google Scholar 

  51. Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    PubMed  Article  CAS  Google Scholar 

  52. Thongbai P, Goodman BA (2000) Free radical generation and post-anoxic injury in rice grown in an iron-toxic soil. J Plant Nutr 23:1887–1900

    Article  CAS  Google Scholar 

  53. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotech 25:158–165

    Article  CAS  Google Scholar 

  54. Voegelin A, Weber F-A, Kretzschmar R (2007) Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element mapping and EXAFS spectroscopy. Geochim Cosmochim Acta 71:5804–5820

    Article  CAS  Google Scholar 

  55. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    PubMed  Article  CAS  Google Scholar 

  56. Wu Z, McGrath SP, Wu P, Zhao F-J (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    PubMed  Article  CAS  Google Scholar 

  57. Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    PubMed  Article  CAS  Google Scholar 

  58. Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83:925–932

    PubMed  Article  CAS  Google Scholar 

  59. Yoshida S, Forno D, Cock J, Gomez K (1976) Laboratory manual for physiological studies of rice. IRRI, Philippines

    Google Scholar 

  60. Zhao F-J, Ma J, Meharg A, McGrath S (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    PubMed  Article  CAS  Google Scholar 

  61. Zhao F-J, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Ann Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  62. Zhao F-J, Stroud JL, Khan MA, McGrath SP (2012) Arsenic translocation in rice investigated using radioactive 73As tracer. Plant Soil 350:413–420

    Article  CAS  Google Scholar 

  63. Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Poll 154:169–171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Fonds National de la Recherche Scientifique (FNRS—FRFC; Convention 2.4599.12) for financial support. The authors would like to thank anonymous referees for their valuable help in improving the quality of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stanley Lutts.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vromman, D., Lutts, S., Lefèvre, I. et al. Effects of simultaneous arsenic and iron toxicities on rice (Oryza sativa L.) development, yield-related parameters and As and Fe accumulation in relation to As speciation in the grains. Plant Soil 371, 199–217 (2013). https://doi.org/10.1007/s11104-013-1676-2

Download citation

Keywords

  • Iron plaque
  • Iron stress
  • Arsenic
  • Oryza sativa
  • Rice
  • Rice grain arsenic