Plant and Soil

, Volume 371, Issue 1–2, pp 53–66 | Cite as

Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy

  • Andreas Demey
  • Jeroen Staelens
  • Lander Baeten
  • Pascal Boeckx
  • Martin Hermy
  • Jens Kattge
  • Kris Verheyen
Regular Article



Hemiparasitic plants often produce nutrient-rich litter with high decomposition rates, and thus can enhance nutrient availability. When plant species have differential affinities for this nutrient source, hemiparasitic litter might influence species composition in addition to the parasitic suppression of host species. We expected that species adapted to fertile habitats derive a higher proportion of nutrients from the hemiparasitic litter compared to other species.


15N-labeled litter of Rhinanthus angustifolius and Pedicularis sylvatica was added to experimental field plots and adjacent litter bags. We examined N release from the litter, N uptake by the vegetation 2, 4 and 12 months after litter addition and differences in the proportion of N taken up from the litter (NL) between co-occurring species.


The percentage of N in shoots of co-occurring plant species that is derived from the added hemiparasitic litter (NL) strongly differed between the species (0.1–6.2 %). After exclusion of species with an alternative N source (legumes as well as ectomycorrhizal and ericoid mycorrhizal species), NL was positively related (p < 0.001) with specific leaf area (SLA) and at Pedicularis sites with leaf N concentration (LNC) and leaf phosphorus concentration (LPC) (p < 0.05), i.e. leaf traits associated with a fast-growth strategy and adaptation to high-nutrient environments.


Our results suggest that nutrient release from hemiparasitic litter favors plant species with a fast-growth strategy adapted to high-nutrient environments compared to species with a slow-growth strategy. Whether continued hemiparasitic litter inputs are able to change species composition in the long term requires further research.


15N tracing Litter addition Semi-natural grassland TRY Leaf traits Nutrient cycling Rhinanthus angustifolius Pedicularis sylvatica 



Special thanks to the six reserve managers. This research was funded by the Research Foundation - Flanders (FWO-Vlaanderen). AD was supported by a PhD grant of the agency for Innovation by Science and Technology (IWT-Vlaanderen); JS was funded as postdoctoral fellow of FWO-Vlaanderen. LB held a postdoctoral fellowship of the Special Research Fund of Ghent University (BOF). The study has been supported by the TRY initiative on plant traits ( The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Bönisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is/has been supported by DIVERSITAS, IGBP, the Global Land Project, the UK Natural Environment Research Council (NERC) through its program QUEST (Quantifying and Understanding the Earth System), the French Foundation for Biodiversity Research (FRB), and GIS “Climat, Environnement et Société” France.


  1. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608CrossRefGoogle Scholar
  2. Aerts R and Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Fitter AH and Raffaelli DG (eds) Advances in Ecological Research, Vol 30. pp 1–67Google Scholar
  3. Ameloot E, Verheyen K, Hermy M (2005) Meta-analysis of standing crop reduction by Rhinanthus spp. and its effect on vegetation structure. Folia Geobotanica 40:289–310CrossRefGoogle Scholar
  4. Ameloot E, Verheyen K, Bakker JP, De Vries Y, Hermy M (2006) Long-term dynamics of the hemiparasite Rhinanthus angustifolius and its relationship with vegetation structure. J Veg Sci 17:637–646Google Scholar
  5. Ameloot E, Verlinden G, Boeckx P, Verheyen K, Hermy M (2008) Impact of hemiparasitic Rhinanthus angustifolius and R-minor on nitrogen availability in grasslands. Plant Soil 311:255–268CrossRefGoogle Scholar
  6. Atkin OK, Westbeek MHM, Cambridge ML, Lambers H, Pons TL (1997) Leaf respiration in light and darkness - a comparison of slow- and fast-growing Poa species. Plant Physiol 113:961–965PubMedGoogle Scholar
  7. Bahn M, Wohlfahrt G, Haubner E, Horak I, Michaeler W, Rottmar K, Tappeiner U, Cernusca A (1999) Leaf photosynthesis, nitrogen contents and specific leaf area of 30 grassland species in differently managed mountain ecosystems in the Eastern Alps. In: Cernusca A, Tappeiner U, Bayfield N (eds) Land-use changes in european mountain ecosystems. ECOMONT- concept and results. Blackwell Wissenschaft, Berlin, pp 247–255Google Scholar
  8. Bakker C, Rodenburg J, van Bodegom PM (2005) Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275:111–122CrossRefGoogle Scholar
  9. Bakker C, Van Bodegom PM, Nelissen HJM, Ernst WHO, Aerts R (2006) Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecol 185:19–28CrossRefGoogle Scholar
  10. Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Quirk H, Hobbs PJ (2006) Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969–972PubMedCrossRefGoogle Scholar
  11. Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313CrossRefGoogle Scholar
  12. Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176:375–389PubMedCrossRefGoogle Scholar
  13. Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582CrossRefGoogle Scholar
  14. Cornelissen JHC, Diez PC, Hunt R (1996) Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J Ecol 84:755–765CrossRefGoogle Scholar
  15. Cornelissen JHC, Cerabolini B, Castro-Diez P, Villar-Salvador P, Montserrat-Marti G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003) Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J Veg Sci 14:311–322CrossRefGoogle Scholar
  16. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071PubMedCrossRefGoogle Scholar
  17. Craine JM (2005) Reconciling plant strategy theories of Grime and Tilman. J Ecol 93:1041–1052CrossRefGoogle Scholar
  18. Craine JM (2009) Resource strategies of wild plants. Princeton University Press, New JerseyGoogle Scholar
  19. Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005) Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86:12–19CrossRefGoogle Scholar
  20. Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Penuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992PubMedCrossRefGoogle Scholar
  21. Davies DM, Graves JD, Elias CO, Williams PJ (1997) The impact of rhinanthus spp. on sward productivity and composition: implications for the restoration of species-rich grasslands. Biol Conserv 82:87–93CrossRefGoogle Scholar
  22. De Schrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A, Wuyts K and Verheyen K (2011) Cumulative nitrogen input drives species loss in terrestrial ecosystems. Global Ecol and BiogeogrGoogle Scholar
  23. Demey A, Ameloot E, Staelens J, De Schrijver A, Verstraeten G, Boeckx P, Hermy M and Verheyen K (2013) Effects of two contrasting hemiparasitic plant species on biomass production and nitrogen availability. Oecologia. doi: 10.1007/s00442-013-2602-2
  24. Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304Google Scholar
  25. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology – a review. Basic Appl Ecol 4:493–506CrossRefGoogle Scholar
  26. Ellenberg H, Leuschner C (2010) Vegetation mitteleuropas mit den alpen, 6th edn. Ulmer, StuttgartGoogle Scholar
  27. Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol 98:362–373CrossRefGoogle Scholar
  28. Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quested H, Quetier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau JP, Thebault A, Vile D, Zarovali MP (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 european sites. Ann Bot 99:967–985PubMedCrossRefGoogle Scholar
  29. Gauslaa Y (1990) Water relations and mineral nutrients in Melampyrum pratense (Scrophulariaceae) in oligotrophic and mesotrophic boreal forests. Acta Oecol Int J Ecol 11:525–537Google Scholar
  30. Gauslaa Y, Odasz AM (1990) Water relations, temperatures, and mineral nutrients in Pedicularis dasyantha (Scrophulariaceae) from Svalbard, Norway. Holarct Ecol 13:112–121Google Scholar
  31. Gibson CC, Watkinson AR (1991) Host selectivity and the mediation of competition by the root hemiparasite Rhinanthus minor. Oecologia 86:81–87CrossRefGoogle Scholar
  32. Grime JP (1977) Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  33. Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385PubMedCrossRefGoogle Scholar
  34. Harrison F (2011) Getting started with meta-analysis. Methods Ecol Evol 2:1–10CrossRefGoogle Scholar
  35. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638PubMedCrossRefGoogle Scholar
  36. Hejcman M, Klaudisová M, Schellberg J, Honsová D (2007) The rengen grassland experiment: plant species composition after 64 years of fertilizer application. Agric Ecosyst Environ 122:259–266CrossRefGoogle Scholar
  37. Hickler T (1999) Plant functional types and community characteristics along environmental gradients on Öland’s Great Alvar (Sweden) Masters Thesis. University of Lund, SwedenGoogle Scholar
  38. Joshi J, Matthies D, Schmid B (2000) Root hemiparasites and plant diversity in experimental grassland communities. J Ecol 88:634–644CrossRefGoogle Scholar
  39. Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Chang Biol 15:976–991CrossRefGoogle Scholar
  40. Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Bonisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernandez-Mendez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kuhn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusia J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Muller SC, Nadrowski K, Naeem S, Niinemets U, Nollert S, Nuske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordonez J, Overbeck G, Ozinga WA, Patino S, Paula S, Pausas JG, Penuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negre B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY - a global database of plant traits. Glob Chang Biol 17:2905–2935CrossRefGoogle Scholar
  41. Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168:E103–E122PubMedCrossRefGoogle Scholar
  42. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesova J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gotzenberger L, Hodgson JG, Jackel AK, Kuhn I, Kunzmann D, Ozinga WA, Romermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  43. Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, BerkeleyGoogle Scholar
  44. Kuijt J (1979) Host selection by parasitic angiosperms. Symb Bot Upsal XXII:194–199Google Scholar
  45. Louault F, Pillar VD, Aufrere J, Garnier E, Soussana JF (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16:151–160CrossRefGoogle Scholar
  46. Loveys BR, Atkinson LJ, Sherlock DJ, Roberts RL, Fitter AH, Atkin OK (2003) Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob Chang Biol 9:895–910CrossRefGoogle Scholar
  47. March WA, Watson DM (2010) The contribution of mistletoes to nutrient returns: evidence for a critical role in nutrient cycling. Austral Ecol 35:713–721CrossRefGoogle Scholar
  48. Matthies D (1996) Interactions between the root hemiparasite melampyrum arvense and mixtures of host plants: heterotrophic benefit and parasite-mediated competition. Oikos 75:118–124CrossRefGoogle Scholar
  49. Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, De Angelis P, Forstreuter M, Jach ME, Kellomaki S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jarvis PG (1999) Effects of elevated CO2 on photosynthesis in european forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495CrossRefGoogle Scholar
  50. Meziane D, Shipley B (1999) Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell Environ 22:447–459CrossRefGoogle Scholar
  51. Niinemets U (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469CrossRefGoogle Scholar
  52. Ogaya R, Penuelas J (2003) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ Exp Bot 50:137–148CrossRefGoogle Scholar
  53. Olff H, Berendse F, Devisser W (1994) Changes in nitrogen mineralization, tissue nutrient concentrations and biomass compartmentation after cessation of fertilizer application to mown grassland. J Ecol 82:611–620CrossRefGoogle Scholar
  54. Ordonez JC, van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149CrossRefGoogle Scholar
  55. Ordonez JC, van Bodegom PM, Witte JPM, Bartholomeus RP, van Hal JR, Aerts R (2010) Plant strategies in relation to resource supply in mesic to wet environments: does theory mirror nature? Am Nat 175:225–239PubMedCrossRefGoogle Scholar
  56. Osone Y, Ishida A, Tateno M (2008) Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots. New Phytol 179:417–427PubMedCrossRefGoogle Scholar
  57. Pate JS (1995) Mineral relationships of parasites and their hosts. In: Press MC, Graves JD (eds) Parasitic plants. Chapman & Hall, London, pp 80–102Google Scholar
  58. Petru M (2005) Year-to-year oscillations in demography of the strictly biennial Pedicularis sylvatica and effects of experimental disturbances. Plant Ecol 181:289–298CrossRefGoogle Scholar
  59. Phoenix GK, Press MC (2005) Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). J Ecol 93:67–78CrossRefGoogle Scholar
  60. Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588PubMedCrossRefGoogle Scholar
  61. Press MC (1995) Carbon and nitrogen relations. In: Press MC, Graves JD (eds) Parasitic plants. Chapman and Hall, London, pp 103–124Google Scholar
  62. Press MC (1998) Dracula or robin hood? A functional role for root hemiparasites in nutrient poor ecosystems. Oikos 82:609–611CrossRefGoogle Scholar
  63. Press MC, Scholes JD, Watling JR (1999) Parasitic Plants: physiological and ecological interactions with their hosts. In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell, Oxford, pp 175–197Google Scholar
  64. Quested HM (2008) Parasitic plants-impacts on nutrient cycling. Plant Soil 311:269–272CrossRefGoogle Scholar
  65. Quested HM, Press MC, Callaghan TV, Cornelissen JHC (2002) The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia 130:88–95Google Scholar
  66. Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE (2003a) Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:3209–3221CrossRefGoogle Scholar
  67. Quested HM, Press MC, Callaghan TV (2003b) Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling. Oecologia 135:606–614PubMedGoogle Scholar
  68. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391CrossRefGoogle Scholar
  69. Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11:793–801PubMedCrossRefGoogle Scholar
  70. Reich PB, Oleksyn J, Wright IJ (2009) Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207–212PubMedCrossRefGoogle Scholar
  71. Ren YQ, Guan KY, Li AR, Hu XJ, Zhang L (2010) Host dependence and preference of the root hemiparasite, pedicularis cephalantha franch. (Orobanchaceae). Folia Geobotanica 45:443–455CrossRefGoogle Scholar
  72. Schaffers AP, Sykora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  73. Seel WE, Press MC (1993) Influence of the host on 3 sub-arctic annual facultative root hemiparasites. 1. Growth, mineral accumulation and aboveground dry-matter partitioning. New Phytol 125:131–138CrossRefGoogle Scholar
  74. Shipley B (1995) Structured interspecific determinants of specific leaf-area in 34 species of herbaceous angiosperms. Funct Ecol 9:312–319CrossRefGoogle Scholar
  75. Shipley B (2002) Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct Ecol 16:682–689CrossRefGoogle Scholar
  76. Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM (2006) The park grass experiment 1856–2006: its contribution to ecology. J Ecol 94:801–814CrossRefGoogle Scholar
  77. Spasojevic M, Suding K (2011) Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism? Oecologia 165:193–200PubMedCrossRefGoogle Scholar
  78. Springob G, Kirchmann H (2002) C-rich sandy Ap horizons of specific historical land-use contain large fractions of refractory organic matter. Soil Biol Biochem 34:1571–1581CrossRefGoogle Scholar
  79. Springob G, Kirchmann H (2003) Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biol Biochem 35:629–632CrossRefGoogle Scholar
  80. Swanston CW, Myrold DD (1997) Incorporation of nitrogen from decomposing red alder leaves into plants and soil of a recent clearcut in Oregon. Can J For Res 27:1496–1502CrossRefGoogle Scholar
  81. Swertz CA, Schaminée JHJ, Dijk E (1996) 19. Nardetea. In: Schaminée JHJ, Stortelder AHF, Weeda EJ (eds) De vegetatie van Nederland 3. Plantengemeenschappen van graslanden, zomen en droge heiden. Opulus Press, Uppsala/LeidenGoogle Scholar
  82. the R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Google Scholar
  83. van Bodegom PM, Sorrell BK, Oosthoek A, Bakke C, Aerts R (2008) Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89:193–204PubMedCrossRefGoogle Scholar
  84. Van Dijk H (1968) Das C/N-Verhältnis im A1(p)-Horizont von kultivierten Sandböden im Zusammenhang mit Kohlenstoff-und Stickstoffmineralisierung. Stikstof 12:89–96Google Scholar
  85. VMM (2009) ‘Zure regen’ in Vlaanderen, Depositiemeetnet verzuring 2008Google Scholar
  86. Watson DM, McGregor HW, Spooner PG (2011) Hemiparasitic shrubs increase resource availability and multi-trophic diversity of eucalypt forest birds. Funct Ecol 25:889–899CrossRefGoogle Scholar
  87. Weber HC (1976) Host plants and parasitism in some middle-european rhinanthoideae (scrophulariaceae). Plant Syst Evol 125Google Scholar
  88. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227CrossRefGoogle Scholar
  89. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159CrossRefGoogle Scholar
  90. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827PubMedCrossRefGoogle Scholar
  91. Zeller B, Colin-Belgrand M, Dambrine E, Martin F, Bottner P (2000) Decomposition of N-15-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia 123:550–559CrossRefGoogle Scholar
  92. Zuidhoff AC, Schaminée JHJ, van’t Veer R (1996) 16. Molinio-Arrhenatheretea. In: Schaminée JHJ, Stortelder AHF, Weeda EJ (eds) De vegetatie van Nederland 3. Plantengemeenschappen van graslanden, zomen en droge heiden. Opulus Press, Uppsala/LeidenGoogle Scholar
  93. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andreas Demey
    • 1
  • Jeroen Staelens
    • 1
    • 3
  • Lander Baeten
    • 1
    • 4
  • Pascal Boeckx
    • 3
  • Martin Hermy
    • 2
  • Jens Kattge
    • 5
  • Kris Verheyen
    • 1
  1. 1.Forest & Nature Lab (ForNaLab)Ghent UniversityGontrodeBelgium
  2. 2.Division Forest, Nature and Landscape (FNL)KU LeuvenHeverleeBelgium
  3. 3.Isotope Bioscience Laboratory (ISOFYS)Ghent UniversityGhentBelgium
  4. 4.Terrestrial Ecology Unit (TEREC)Ghent UniversityGhentBelgium
  5. 5.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations