Skip to main content
Log in

Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Hemiparasitic plants often produce nutrient-rich litter with high decomposition rates, and thus can enhance nutrient availability. When plant species have differential affinities for this nutrient source, hemiparasitic litter might influence species composition in addition to the parasitic suppression of host species. We expected that species adapted to fertile habitats derive a higher proportion of nutrients from the hemiparasitic litter compared to other species.

Methods

15N-labeled litter of Rhinanthus angustifolius and Pedicularis sylvatica was added to experimental field plots and adjacent litter bags. We examined N release from the litter, N uptake by the vegetation 2, 4 and 12 months after litter addition and differences in the proportion of N taken up from the litter (NL) between co-occurring species.

Results

The percentage of N in shoots of co-occurring plant species that is derived from the added hemiparasitic litter (NL) strongly differed between the species (0.1–6.2 %). After exclusion of species with an alternative N source (legumes as well as ectomycorrhizal and ericoid mycorrhizal species), NL was positively related (p < 0.001) with specific leaf area (SLA) and at Pedicularis sites with leaf N concentration (LNC) and leaf phosphorus concentration (LPC) (p < 0.05), i.e. leaf traits associated with a fast-growth strategy and adaptation to high-nutrient environments.

Conclusions

Our results suggest that nutrient release from hemiparasitic litter favors plant species with a fast-growth strategy adapted to high-nutrient environments compared to species with a slow-growth strategy. Whether continued hemiparasitic litter inputs are able to change species composition in the long term requires further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608

    Article  Google Scholar 

  • Aerts R and Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Fitter AH and Raffaelli DG (eds) Advances in Ecological Research, Vol 30. pp 1–67

  • Ameloot E, Verheyen K, Hermy M (2005) Meta-analysis of standing crop reduction by Rhinanthus spp. and its effect on vegetation structure. Folia Geobotanica 40:289–310

    Article  Google Scholar 

  • Ameloot E, Verheyen K, Bakker JP, De Vries Y, Hermy M (2006) Long-term dynamics of the hemiparasite Rhinanthus angustifolius and its relationship with vegetation structure. J Veg Sci 17:637–646

    Google Scholar 

  • Ameloot E, Verlinden G, Boeckx P, Verheyen K, Hermy M (2008) Impact of hemiparasitic Rhinanthus angustifolius and R-minor on nitrogen availability in grasslands. Plant Soil 311:255–268

    Article  CAS  Google Scholar 

  • Atkin OK, Westbeek MHM, Cambridge ML, Lambers H, Pons TL (1997) Leaf respiration in light and darkness - a comparison of slow- and fast-growing Poa species. Plant Physiol 113:961–965

    PubMed  CAS  Google Scholar 

  • Bahn M, Wohlfahrt G, Haubner E, Horak I, Michaeler W, Rottmar K, Tappeiner U, Cernusca A (1999) Leaf photosynthesis, nitrogen contents and specific leaf area of 30 grassland species in differently managed mountain ecosystems in the Eastern Alps. In: Cernusca A, Tappeiner U, Bayfield N (eds) Land-use changes in european mountain ecosystems. ECOMONT- concept and results. Blackwell Wissenschaft, Berlin, pp 247–255

    Google Scholar 

  • Bakker C, Rodenburg J, van Bodegom PM (2005) Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275:111–122

    Article  CAS  Google Scholar 

  • Bakker C, Van Bodegom PM, Nelissen HJM, Ernst WHO, Aerts R (2006) Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecol 185:19–28

    Article  Google Scholar 

  • Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Quirk H, Hobbs PJ (2006) Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969–972

    Article  PubMed  CAS  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Article  Google Scholar 

  • Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176:375–389

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cornelissen JHC, Diez PC, Hunt R (1996) Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J Ecol 84:755–765

    Article  Google Scholar 

  • Cornelissen JHC, Cerabolini B, Castro-Diez P, Villar-Salvador P, Montserrat-Marti G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003) Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J Veg Sci 14:311–322

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Craine JM (2005) Reconciling plant strategy theories of Grime and Tilman. J Ecol 93:1041–1052

    Article  Google Scholar 

  • Craine JM (2009) Resource strategies of wild plants. Princeton University Press, New Jersey

    Google Scholar 

  • Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005) Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86:12–19

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Penuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  PubMed  CAS  Google Scholar 

  • Davies DM, Graves JD, Elias CO, Williams PJ (1997) The impact of rhinanthus spp. on sward productivity and composition: implications for the restoration of species-rich grasslands. Biol Conserv 82:87–93

    Article  Google Scholar 

  • De Schrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A, Wuyts K and Verheyen K (2011) Cumulative nitrogen input drives species loss in terrestrial ecosystems. Global Ecol and Biogeogr

  • Demey A, Ameloot E, Staelens J, De Schrijver A, Verstraeten G, Boeckx P, Hermy M and Verheyen K (2013) Effects of two contrasting hemiparasitic plant species on biomass production and nitrogen availability. Oecologia. doi:10.1007/s00442-013-2602-2

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology – a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation mitteleuropas mit den alpen, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol 98:362–373

    Article  Google Scholar 

  • Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quested H, Quetier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau JP, Thebault A, Vile D, Zarovali MP (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 european sites. Ann Bot 99:967–985

    Article  PubMed  Google Scholar 

  • Gauslaa Y (1990) Water relations and mineral nutrients in Melampyrum pratense (Scrophulariaceae) in oligotrophic and mesotrophic boreal forests. Acta Oecol Int J Ecol 11:525–537

    Google Scholar 

  • Gauslaa Y, Odasz AM (1990) Water relations, temperatures, and mineral nutrients in Pedicularis dasyantha (Scrophulariaceae) from Svalbard, Norway. Holarct Ecol 13:112–121

    Google Scholar 

  • Gibson CC, Watkinson AR (1991) Host selectivity and the mediation of competition by the root hemiparasite Rhinanthus minor. Oecologia 86:81–87

    Article  Google Scholar 

  • Grime JP (1977) Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  PubMed  CAS  Google Scholar 

  • Harrison F (2011) Getting started with meta-analysis. Methods Ecol Evol 2:1–10

    Article  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638

    Article  PubMed  CAS  Google Scholar 

  • Hejcman M, Klaudisová M, Schellberg J, Honsová D (2007) The rengen grassland experiment: plant species composition after 64 years of fertilizer application. Agric Ecosyst Environ 122:259–266

    Article  Google Scholar 

  • Hickler T (1999) Plant functional types and community characteristics along environmental gradients on Öland’s Great Alvar (Sweden) Masters Thesis. University of Lund, Sweden

  • Joshi J, Matthies D, Schmid B (2000) Root hemiparasites and plant diversity in experimental grassland communities. J Ecol 88:634–644

    Article  Google Scholar 

  • Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Chang Biol 15:976–991

    Article  Google Scholar 

  • Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Bonisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernandez-Mendez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kuhn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusia J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Muller SC, Nadrowski K, Naeem S, Niinemets U, Nollert S, Nuske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordonez J, Overbeck G, Ozinga WA, Patino S, Paula S, Pausas JG, Penuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negre B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY - a global database of plant traits. Glob Chang Biol 17:2905–2935

    Article  Google Scholar 

  • Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168:E103–E122

    Article  PubMed  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesova J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gotzenberger L, Hodgson JG, Jackel AK, Kuhn I, Kunzmann D, Ozinga WA, Romermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley

    Google Scholar 

  • Kuijt J (1979) Host selection by parasitic angiosperms. Symb Bot Upsal XXII:194–199

    Google Scholar 

  • Louault F, Pillar VD, Aufrere J, Garnier E, Soussana JF (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16:151–160

    Article  Google Scholar 

  • Loveys BR, Atkinson LJ, Sherlock DJ, Roberts RL, Fitter AH, Atkin OK (2003) Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob Chang Biol 9:895–910

    Article  Google Scholar 

  • March WA, Watson DM (2010) The contribution of mistletoes to nutrient returns: evidence for a critical role in nutrient cycling. Austral Ecol 35:713–721

    Article  Google Scholar 

  • Matthies D (1996) Interactions between the root hemiparasite melampyrum arvense and mixtures of host plants: heterotrophic benefit and parasite-mediated competition. Oikos 75:118–124

    Article  Google Scholar 

  • Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, De Angelis P, Forstreuter M, Jach ME, Kellomaki S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jarvis PG (1999) Effects of elevated CO2 on photosynthesis in european forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495

    Article  CAS  Google Scholar 

  • Meziane D, Shipley B (1999) Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell Environ 22:447–459

    Article  Google Scholar 

  • Niinemets U (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469

    Article  Google Scholar 

  • Ogaya R, Penuelas J (2003) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ Exp Bot 50:137–148

    Article  Google Scholar 

  • Olff H, Berendse F, Devisser W (1994) Changes in nitrogen mineralization, tissue nutrient concentrations and biomass compartmentation after cessation of fertilizer application to mown grassland. J Ecol 82:611–620

    Article  CAS  Google Scholar 

  • Ordonez JC, van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Ordonez JC, van Bodegom PM, Witte JPM, Bartholomeus RP, van Hal JR, Aerts R (2010) Plant strategies in relation to resource supply in mesic to wet environments: does theory mirror nature? Am Nat 175:225–239

    Article  PubMed  Google Scholar 

  • Osone Y, Ishida A, Tateno M (2008) Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots. New Phytol 179:417–427

    Article  PubMed  CAS  Google Scholar 

  • Pate JS (1995) Mineral relationships of parasites and their hosts. In: Press MC, Graves JD (eds) Parasitic plants. Chapman & Hall, London, pp 80–102

    Google Scholar 

  • Petru M (2005) Year-to-year oscillations in demography of the strictly biennial Pedicularis sylvatica and effects of experimental disturbances. Plant Ecol 181:289–298

    Article  Google Scholar 

  • Phoenix GK, Press MC (2005) Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). J Ecol 93:67–78

    Article  Google Scholar 

  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Press MC (1995) Carbon and nitrogen relations. In: Press MC, Graves JD (eds) Parasitic plants. Chapman and Hall, London, pp 103–124

    Google Scholar 

  • Press MC (1998) Dracula or robin hood? A functional role for root hemiparasites in nutrient poor ecosystems. Oikos 82:609–611

    Article  Google Scholar 

  • Press MC, Scholes JD, Watling JR (1999) Parasitic Plants: physiological and ecological interactions with their hosts. In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell, Oxford, pp 175–197

    Google Scholar 

  • Quested HM (2008) Parasitic plants-impacts on nutrient cycling. Plant Soil 311:269–272

    Article  CAS  Google Scholar 

  • Quested HM, Press MC, Callaghan TV, Cornelissen JHC (2002) The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia 130:88–95

    Google Scholar 

  • Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE (2003a) Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:3209–3221

    Article  Google Scholar 

  • Quested HM, Press MC, Callaghan TV (2003b) Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling. Oecologia 135:606–614

    PubMed  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11:793–801

    Article  PubMed  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ (2009) Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207–212

    Article  PubMed  Google Scholar 

  • Ren YQ, Guan KY, Li AR, Hu XJ, Zhang L (2010) Host dependence and preference of the root hemiparasite, pedicularis cephalantha franch. (Orobanchaceae). Folia Geobotanica 45:443–455

    Article  Google Scholar 

  • Schaffers AP, Sykora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244

    Article  Google Scholar 

  • Seel WE, Press MC (1993) Influence of the host on 3 sub-arctic annual facultative root hemiparasites. 1. Growth, mineral accumulation and aboveground dry-matter partitioning. New Phytol 125:131–138

    Article  CAS  Google Scholar 

  • Shipley B (1995) Structured interspecific determinants of specific leaf-area in 34 species of herbaceous angiosperms. Funct Ecol 9:312–319

    Article  Google Scholar 

  • Shipley B (2002) Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct Ecol 16:682–689

    Article  Google Scholar 

  • Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM (2006) The park grass experiment 1856–2006: its contribution to ecology. J Ecol 94:801–814

    Article  CAS  Google Scholar 

  • Spasojevic M, Suding K (2011) Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism? Oecologia 165:193–200

    Article  PubMed  Google Scholar 

  • Springob G, Kirchmann H (2002) C-rich sandy Ap horizons of specific historical land-use contain large fractions of refractory organic matter. Soil Biol Biochem 34:1571–1581

    Article  CAS  Google Scholar 

  • Springob G, Kirchmann H (2003) Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biol Biochem 35:629–632

    Article  CAS  Google Scholar 

  • Swanston CW, Myrold DD (1997) Incorporation of nitrogen from decomposing red alder leaves into plants and soil of a recent clearcut in Oregon. Can J For Res 27:1496–1502

    Article  Google Scholar 

  • Swertz CA, Schaminée JHJ, Dijk E (1996) 19. Nardetea. In: Schaminée JHJ, Stortelder AHF, Weeda EJ (eds) De vegetatie van Nederland 3. Plantengemeenschappen van graslanden, zomen en droge heiden. Opulus Press, Uppsala/Leiden

    Google Scholar 

  • the R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org

    Google Scholar 

  • van Bodegom PM, Sorrell BK, Oosthoek A, Bakke C, Aerts R (2008) Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89:193–204

    Article  PubMed  Google Scholar 

  • Van Dijk H (1968) Das C/N-Verhältnis im A1(p)-Horizont von kultivierten Sandböden im Zusammenhang mit Kohlenstoff-und Stickstoffmineralisierung. Stikstof 12:89–96

    Google Scholar 

  • VMM (2009) ‘Zure regen’ in Vlaanderen, Depositiemeetnet verzuring 2008

  • Watson DM, McGregor HW, Spooner PG (2011) Hemiparasitic shrubs increase resource availability and multi-trophic diversity of eucalypt forest birds. Funct Ecol 25:889–899

    Article  Google Scholar 

  • Weber HC (1976) Host plants and parasitism in some middle-european rhinanthoideae (scrophulariaceae). Plant Syst Evol 125

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

  • Zeller B, Colin-Belgrand M, Dambrine E, Martin F, Bottner P (2000) Decomposition of N-15-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia 123:550–559

    Article  Google Scholar 

  • Zuidhoff AC, Schaminée JHJ, van’t Veer R (1996) 16. Molinio-Arrhenatheretea. In: Schaminée JHJ, Stortelder AHF, Weeda EJ (eds) De vegetatie van Nederland 3. Plantengemeenschappen van graslanden, zomen en droge heiden. Opulus Press, Uppsala/Leiden

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

Special thanks to the six reserve managers. This research was funded by the Research Foundation - Flanders (FWO-Vlaanderen). AD was supported by a PhD grant of the agency for Innovation by Science and Technology (IWT-Vlaanderen); JS was funded as postdoctoral fellow of FWO-Vlaanderen. LB held a postdoctoral fellowship of the Special Research Fund of Ghent University (BOF). The study has been supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Bönisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is/has been supported by DIVERSITAS, IGBP, the Global Land Project, the UK Natural Environment Research Council (NERC) through its program QUEST (Quantifying and Understanding the Earth System), the French Foundation for Biodiversity Research (FRB), and GIS “Climat, Environnement et Société” France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Demey.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demey, A., Staelens, J., Baeten, L. et al. Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 371, 53–66 (2013). https://doi.org/10.1007/s11104-013-1658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1658-4

Keywords

Navigation