Fine root and aboveground carbon stocks in riparian forests: the roles of diking and environmental gradients

Abstract

Aims

We analysed current carbon (C) stocks in fine root and aboveground biomass of riparian forests and influential environmental parameters on either side of a dike in the Donau-Auen National Park, Austria.

Methods

On both sides of the dike, carbon (C) stock of fine roots (CFR) under four dominant tree species and of aboveground biomass (CAB) were assessed by topsoil cores (0–30 cm) and angle count sampling method respectively (n = 48). C stocks were modeled, performing boosted regression trees (BRT).

Results

Overall CFR was 2.8 t ha−1, with significantly higher C stocks in diked (DRF) compared to flooded riparian forests (FRF). In contrast to CFR, mean CAB was 123 t ha−1 and lower in DRF compared to FRF. However, dike construction was consistently ruled out as a predictor variable in BRT. CFR was influenced by the distance to the Danube River and the dominant tree species. CAB was mainly influenced by the magnitude of fluctuations in the groundwater table and the distances to the river and the low groundwater table.

Conclusions

Despite pronounced differences in FRF and DRF, we conclude that there is only weak support that dikes directly influence C allocation in floodplain forests within the time scale considered (110 years).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

BRT:

Boosted regression trees

C:

Carbon

CFR:

C stock of fine root biomass

CAB:

C stock of aboveground biomass

DBH:

Diameter at breast height

DRF:

Diked riparian forest

FRF:

Flooded riparian forest

NPP:

Net primary production

SE:

Standard error

TRF:

Total riparian forest

References

  1. Baird KJ, Stromberg JC, Maddock T (2005) Linking riparian dynamics and groundwater: an ecohydrologic approach to modeling groundwater and riparian vegetation. Environ Manag 36:551–564

    Article  Google Scholar 

  2. Baker TT, Conner WH, Lockaby GB, Stanturf JA, Burke MK (2001) Fine root productivity and dynamics on a forested floodplain in South Carolina. Soil Sci Soc Am J 65:545–556

    Article  CAS  Google Scholar 

  3. Bendix J, Hupp CR (2000) Hydrological and geomorphological impacts on riparian plant communities. Hydrol Process 14:2977–2990

    Article  Google Scholar 

  4. BMU (2003) Hydrologischer Atlas von Deutschland (HAD). Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (ed), Bonn/Berlin

  5. BMU (2009) Auenzustandsbericht. Flussauen in Deutschland. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (ed), Berlin

  6. Bonn S, Roloff A (2002) Konkurrenzdynamik und Ökophysiologie der wichtigsten Baumarten in Hartholzauenwäldern an der mittleren Elbe. Roloff A, Bonn S (eds) Ergebnisse ökologischer Forschung zur nachhaltigen Bewirtschaftung von Auenwäldern an der Mittleren Elbe. Forstwiss Beitr Tharandt/Contrib For Sci 17:7–59

  7. Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161

    Article  Google Scholar 

  8. Burke MK, Chambers JL (2003) Root dynamics in bottomland hardwood forests of the Southeastern United States Coastal Plain. Plant Soil 250:141–153

    Article  CAS  Google Scholar 

  9. Burke MK, Raynal DJ (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135–146

    Article  CAS  Google Scholar 

  10. Cabezas A, Comín FA (2010) Carbon and nitrogen accretion in the topsoil of the Middle Ebro River floodplains (NE Spain): implications for their ecological restoration. Ecol Eng 36:640–652

    Article  Google Scholar 

  11. Cavalcanti GG, Lockaby BG (2005) Effects of sediment deposition on fine root dynamics in riparian forests. Soil Sci Soc Am J 69:729–737

    Article  CAS  Google Scholar 

  12. Chave J, Muller-Landau HC, Baker TR, Easdale TA, ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367

    PubMed  Article  Google Scholar 

  13. Cierjacks A, Kleinschmit B, Babinsky M, Kleinschroth F, Markert A, Menzel M et al (2010) Carbon stocks of soil and vegetation on Danubian floodplains. J Plant Nutr Soil Sci 173:644–653

    Article  CAS  Google Scholar 

  14. Cierjacks A, Kleinschmit B, Kowarik I, Graf M, Lang F (2011) Organic matter distribution in floodplains can be predicted using spatial and vegetation structure data. River Res Appl 27:1048–1057

    Article  Google Scholar 

  15. Conner WH, Gosselink JG, Parrondo RT (1981) Comparison of the vegetation of three Louisiana swamp sites with different flooding regimes. Am J Bot 68:320–331

    Article  Google Scholar 

  16. Day FP, Megonigal JP (1993) The relationship between variable hydroperiod, production allocation, and belowground organic turnover in forested wetlands. Wetlands 13:115–121

    Article  Google Scholar 

  17. Day FP, West SK, Tupacz EG (1988) The influence of ground-water dynamics in a periodically flooded ecosystem, the Great Dismal Swamp. Wetlands 8:1–13

    Article  Google Scholar 

  18. Day FP, Weber EP, Hinkle CR, Drake BG (1996) Effects of elevated atmospheric CO2 on fine root length and distribution in an oak-palmetto scrub ecosystem in Central Florida. Glob Chang Biol 2:143–148

    Article  Google Scholar 

  19. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  20. Elderd BD (2003) The impact of changing flow regimes on riparian vegetation and the riparian species Mimulus guttatus. Ecol Appl 13:1610–1625

    Article  Google Scholar 

  21. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    PubMed  Article  CAS  Google Scholar 

  22. Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84

    Google Scholar 

  23. Fierke MK, Kauffman JB (2005) Structural dynamics of riparian forests along a black cottonwood successional gradient. For Ecol Manag 215:149–162

    Article  Google Scholar 

  24. Fox J (2008) Applied regression analysis and generalized linear models. Sage Publications, Los Angeles

    Google Scholar 

  25. Friedman JM, Osterkamp WR, Lewis WM (1996) The role of vegetation and bed-level fluctuations in the process of channel narrowing. Geomorphology 14:341–351

    Article  Google Scholar 

  26. Giese LA, Aust WM, Trettin CC, Kolka RK (2000) Spatial and temporal patterns of carbon storage and species richness in three South Carolina coastal plain riparian forests. Ecol Eng 15:S157–S170

    Article  Google Scholar 

  27. Giese LAB, Aust WM, Kolka RK, Trettin CC (2003) Biomass and carbon pools of disturbed riparian forests. For Ecol Manag 180:493–508

    Article  Google Scholar 

  28. Grier CC, Vogt KA, Keyes MR, Edmonds RL (1981) Biomass distribution and above- and belowground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Can J For Res 11:155–167

    Article  Google Scholar 

  29. Haubenberger G, Weidinger H (1990) Gedämmte Au - Geflutete Au. Vergleichende Grundlagenforschung zur forstökologischen Beurteilung abgedämmter und gefluteter Auwaldstandorte östlich von Wien. Magistratsabteilung 49, Forstamt und Landwirtschaftsbetrieb der Stadt Wien (ed), Vienna, Austria

  30. Hazlett PW, Gordon AM, Sibley PK, Buttle JM (2005) Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in Northeastern Ontario. For Ecol Manag 219:56–68

    Article  Google Scholar 

  31. Hohensinner S, Jungwirth M, Muhar S, Schmutz S (2011) Spatio-temporal habitat dynamics in a changing Danube River landscape 1812–2006. River Res Appl 27:939–955

    Article  Google Scholar 

  32. Horton JL, Kolb TE, Hart SC (2001a) Physiological response to groundwater depth varies among species and with river flow regulation. Ecol Appl 11:1046–1059

    Article  Google Scholar 

  33. Horton JL, Kolb TE, Hart SC (2001b) Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant Cell Environ 24:293–304

    Article  Google Scholar 

  34. IPCC JJ (2001) Climate change 2001. Impacts, adaptation and vulnerability; contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge

  35. Jackson MB, Attwood PA (1996) Roots of willow (Salix viminalis L.) show marked tolerance to oxygen shortage in flooded soils and in solution culture. Plant Soil 187:37–45

    Article  CAS  Google Scholar 

  36. Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366

    PubMed  Article  CAS  Google Scholar 

  37. Jacobson RB, O’Connor JE, Oguchi T (2003) Surficial geologic tools in fluvial geomorphology. In: Kondolf GM, Piégay H (eds) Tools in fluvial geomorphology. Wiley, Chichester, pp 25–57

    Google Scholar 

  38. Kiley DK, Schneider RL (2005) Riparian roots through time, space and disturbance. Plant Soil 269:259–272

    Article  CAS  Google Scholar 

  39. Koop H (1987) Vegetative reproduction of trees in some European natural forests. Vegetatio 72:103–110

    Google Scholar 

  40. Kramer H, Akça A (2002) Leitfaden zur Waldmeßlehre, 4. Aufl. Sauerländer's Verlag, Frankfurt am Main

  41. Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for scots pine, norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188:211–224

    Google Scholar 

  42. McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490

    Article  Google Scholar 

  43. McTammany ME, Webster JR, Benfield EF, Neatrour MA (2003) Longitudinal patterns of metabolism in a southern Appalachian River. J N Am Benthol Soc 22:359–370

    Article  Google Scholar 

  44. Megonigal JP, Day FP (1992) Effects of flooding on root and shoot production of bald cypress in large experimental enclosures. Ecology 73:1182–1193

    Article  Google Scholar 

  45. Meinen C, Hertel D, Leuschner C (2009) Biomass and morphology of fine roots in temperate borad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding? Oecologia 161:99–111

    PubMed  Article  Google Scholar 

  46. Merritt DM, Cooper DJ (2000) Riparian vegetation and channel change in response to river regulation: a comparative study of regulated and unregulated streams in the Green River Basin, USA. Regul Rivers Res Manag 16:543–564

    Google Scholar 

  47. Mitsch WJ, Ewel KC (1979) Comparative biomass and growth of cypress in Florida wetlands. Am Midl Nat 101:417–426

    Article  Google Scholar 

  48. Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

    Article  Google Scholar 

  49. Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  50. Persson H (1980a) Death and replacement of fine roots in a mature scots pine stand. Ecol Bull (Stockholm) 32:251–260

    Google Scholar 

  51. Persson H (1980b) Spatial distribution of fine-root growth, mortality and decomposition in a young scots pine stand in Central Sweden. Oikos 34:77–87

    Article  Google Scholar 

  52. Piégay H, Schumm SA (2009) System approaches in fluvial geomorphology. In: Kondolf GM, Piégay H (eds) Tools in fluvial geomorphology. Wiley, Chichester, pp 105–134

    Google Scholar 

  53. Pregitzer KS, Friend AL (1996) The structure and function of Populus root systems. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Res Press, Ottawa, pp 331–354

    Google Scholar 

  54. R Development Core Team (2012) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org, Accessed 09 January 2012

  55. Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–1354

    Article  Google Scholar 

  56. Rotkin-Ellman M, Addy K, Gold AJ, Groffman PM (2004) Tree species, root decomposition and subsurface denitrification potential in riparian forests. Plant Soil 263:335–344

    Article  CAS  Google Scholar 

  57. Sali-Bazze M (1981) Entwicklung und Altersstellung von Böden der Donau- und Marchauen im Gebiet von Orth an der Donau und Marchegg / Baumgarten. Dissertation, Universität für Bodenkultur in Wien

  58. Samaritani E, Shrestha J, Fournier B, Frossard E, Gillet F, Guenat C et al (2011) Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland). Hydrol Earth Syst Sci 15:1757–1769

    Article  CAS  Google Scholar 

  59. Schachtschabel P, Blume HP, Brümmer G, Hartge KH, Schwertmann U (1998) Lehrbuch der Bodenkunde. Ferdinand Enke Verl, Stuttgart

    Google Scholar 

  60. Schapire R (2002) The boosting approach to machine learning–an overview. In: Denison DD, Hansen MH, Holmes C, Mallick B, Yu B (eds) MSRI Workshop on nonlinear estimation and classification (2002). Springer, New York, pp 149–172

    Google Scholar 

  61. Simm DJ, Walling DE (1998) Lateral variability of overbank sedimentation on a Devon flood plain. Hydrol Sci J 43:715–732

    Article  Google Scholar 

  62. Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (2002) Strasburger. Lehrbuch der Botanik. 35. Aufl. Spektrum Akad Verl, Heidelberg

  63. Timoney KP, Argus G (2006) Willows, water regime, and recent cover change in the Peace-Athabasca Delta. Ecoscience 13:308–317

    Article  Google Scholar 

  64. Tockner K, Schiemer F, Ward JV (1998) Conservation by restoration: the management concept for a river–floodplain system on the Danube River in Austria. Aquat Conserv Mar Freshw Ecosyst 8:71–86

    Article  Google Scholar 

  65. Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    Google Scholar 

  66. Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  67. Williams CA, Cooper DJ (2005) Mechanism of riparian cottonwood decline along regulated rivers. Ecosystems 8:1–14

    Article  Google Scholar 

  68. Zentralanstalt für Meteorologie und Geodynamik (2002) Klimadaten von Österreich 1971–2000. http://www.zamg.ac.at/fix/klima/oe7100/klima2000/klimadaten_oesterreich_1971_frame1.htm. Accessed 01 November 2011

  69. Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr 4:1–63

    Google Scholar 

  70. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out as a part of the project “Carbon dynamics in soils and vegetation of riparian forests” funded by the Deutsche Forschungsgemeinschaft (DFG, grant number CI 175/1). We thank Torben Lübbe for helping with the field and laboratory work. We also thank Christian Fraissl and Christian Baumgartner (Donau-Auen National Park administration), Alfred Paul Blaschke from the TU Vienna for providing a groundwater model, the via donau – Österreichische Wasserstraßen-Gesellschaft mbH for providing the digital elevation model, Jörg Luster (Swiss Federal Institute for Forest, Snow and Landscape Research) for the pre-submission review and Kelaine Vargas for improving our English. Two anonymous reviewers helped to improve a former version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isaak Rieger.

Additional information

Responsible Editor: Alain Pierret.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 87.1 kb)

ESM 2

(PDF 78.9 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rieger, I., Lang, F., Kleinschmit, B. et al. Fine root and aboveground carbon stocks in riparian forests: the roles of diking and environmental gradients. Plant Soil 370, 497–509 (2013). https://doi.org/10.1007/s11104-013-1638-8

Download citation

Keywords

  • Aboveground biomass
  • Belowground biomass
  • Carbon distribution
  • Carbon sequestration
  • Dike
  • Ecosystem services
  • Floodplain forest