Skip to main content

Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions

Abstract

Background and aims

The biological restoration of saline habitats could be achieved by using halophyte plant species together with adapted arbuscular mycorrhizal fungi (AMF). An interesting plant to be used in restoration of saline environments, Asteriscus maritimus, is highly mycotrophic. The aim of this study was to assess the effectiveness of native and allochthonous AMF to enhance the establishment and growth of the halophyte A. maritimus under saline conditions.

Methods

We studied the symbiotic effectiveness of four AMF strains (three native fungal isolates from a saline soil and one allochthonous, from collection) in A. maritimus subjected to increasing salinity stress. We measured plant physiological parameters by which AMF may ameliorate the detrimental effects of salinity stress.

Results

A. maritimus plants showed a high mycorrhizal dependency, even in absence of salt stress. Plants inoculated with native AMF had higher shoot dry weight, efficiency of photosystem II, stomatal conductance and accumulation of glutathione than those inoculated with the collection AMF at the highest level of salinity. Moreover, at this salt level, only 30 % of A. maritimus plants inoculated with the collection AMF survived, while with the three native AMF, the rate of survival was 100 %.

Conclusions

Results points out the importance of native AMF inoculation in the establishment, survival and growth of A. maritimus plants. Inoculation with these native AMF enhanced A. maritimus salt tolerance by increasing efficiency of photosystem II, stomatal conductance and glutathione content and by reducing oxidative damage. Thus, the use of adequate native AMF inocula could be a critical issue for success in recovering saline degraded areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alguacil MM, Torres MP, Torrecillas E, Díaz G, Roldán A (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    PubMed  Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  Article  CAS  Google Scholar 

  • Brito I, de Carvalho M, Goss MJ (2011) Summer survival of arbuscular mycorrhiza extraradical mycelium and the potential for its management through tillage options in Mediterranean cropping systems. Soil Use Manag 27:350–356

    Google Scholar 

  • Ding M, Hou P, Shen X, Wang M, Deng S, Sun J, Xiao F, Wang R, Zhou X, Lu C, Zhang D, Zheng X, Hu Z, Chen S (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269

    PubMed  Article  CAS  Google Scholar 

  • Enkhtuya B, Rydlova J, Vosátka M (2000) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Appl Soil Ecol 14:201–211

    Article  Google Scholar 

  • Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013a) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51

    PubMed  Article  Google Scholar 

  • Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013b) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil (In press): doi:10.1007/s11104-012-1409-y

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    PubMed  Article  CAS  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    PubMed  Article  CAS  Google Scholar 

  • Ferrol N, Calvente R, Cano C, Barea JM, Azcón-Aguilar C (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl Soil Ecol 25:123–133

    Article  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    PubMed  Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp (pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Geiger F (1973) El Sureste español y los problemas de la aridez. Rev Geogr 7:166–209

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    PubMed  Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clanderon Press, Oxford

    Google Scholar 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B 59:128–133

    Article  CAS  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133

    PubMed  CAS  Google Scholar 

  • Jeffries P, Barea JM (2012) Arbuscular Mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota, vol IX. Fungal Associations, 2nd edn. Springer, Berlin, pp 95–113

    Google Scholar 

  • Jeffries P, Craven-Griffiths A, Barea JM, Levy Y, Dodd JC (2002) Application of arbuscular mycorrhizal fungi in the revegetation of desertified Mediterranean ecosystems. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhäuser Verlag, Basel, pp 151–174

    Chapter  Google Scholar 

  • Juniper S, Abbott L (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    PubMed  Article  CAS  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schussler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    PubMed  Article  Google Scholar 

  • Leipner J, Fracheboud Y, Stamp P (1997) Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant Cell Environ 20:366–372

    Article  CAS  Google Scholar 

  • Lendínez ML, Marchal FM, Salazar C (2011) Estufio florístico de los medios húmedos salinos de Andalucía (S. España). Catálogo y análisis de la flora vascular halófila. Lagascalia 31:77–130

    Google Scholar 

  • Li T, Liu RJ, He XH, Wang BS (2012) Enhancement of superoxide dismutase and catalase activities and salt tolerance of euhalophyte Suaeda salsa L. by mycorrhizal fungus Glomus mosseae. Pedosphere 22:217–224

    Article  CAS  Google Scholar 

  • Mason E (1928) Note on the presence of mycorrhizae in the roots of salt marsh plants. New Phytol 27:193–195

    Article  Google Scholar 

  • Meyer AJ (2007) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 31:1–14

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    PubMed  Article  CAS  Google Scholar 

  • Minotti G, Aust SD (1987) The requirement for iron (III) in the initiation of lipid-peroxidation by iron(II) and hydrogen-peroxide. J Biol Chem 262:1098–1104

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  Article  CAS  Google Scholar 

  • Moghaieb REA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Sci 166:1345–1349

    Article  CAS  Google Scholar 

  • Moora M, Öpik M, Sen R, Zobel M (2004) Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Funct Ecol 18:554–562

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-García B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    PubMed  Article  CAS  Google Scholar 

  • Oliveira RS, Vosátka M, Dodd JC, Castro PML (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23–31

    PubMed  Article  CAS  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components–calculation of qP and Fv '/Fm ' without measuring Fo '. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure of clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:159–161

    Article  Google Scholar 

  • Querejeta JI, Allen MF, Caravaca F, Roldán A (2006) Differential modulation of host plant δ13C and δ18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment. New Phytol 169:379–387

    PubMed  Article  CAS  Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    PubMed  CAS  Google Scholar 

  • Requena N, Pérez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    PubMed  Article  CAS  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    PubMed  Article  CAS  Google Scholar 

  • Rodríguez P, Torrecillas A, Morales MA, Ortuño MF, Sánchez-Blanco MJ (2005) Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ Exp Bot 53:113–123

    Article  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    PubMed  Article  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón R, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    PubMed  Article  CAS  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    PubMed  Article  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    PubMed  Article  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn, Germany

  • Smith IK (1985) Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol 79:1044–1047

    PubMed  Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, Academic Press, New York

    Google Scholar 

  • Sonjak S, Udovic M, Wraber T, Likar M, Regvar M (2009) Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Secovlje salterns. Soil Biol Biochem 41:1847–1856

    Article  CAS  Google Scholar 

  • Tawfik MM, Thalooth AT, Zaki NM (2010) Sustainable restoration of salt-affected soil through revegetation of Leptochloa fusca and Sporobolus virginicus. In: Thomas RP (ed) Proceedings of the Global Forum on Salinization and Climate Change (GFSCC2010). FAO, Rome

    Google Scholar 

  • Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432

    PubMed  Article  CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Valladares F (2004) Global change and radiation in Mediterranean forest ecosystems: a meeting point for ecology and management. In: Arianoutsou M, Papanastasis V (eds) Ecology, conservation and sustainable management of Mediterranean type ecosystems of the world. Mill Press, Rotterdam, pp 1–4

    Google Scholar 

  • Vallejo VR, Aronson J, Pausas JG, Cortina J (2005) Restoration of Mediterranean woodlands. In: Andel JV, Aronson JJ (eds) Restoration ecology: the new frontier. Blackwell Publishing, Oxford, pp 193–207

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Vergeer P, van den Berg LJL, Baar J, Ouborg NJ, Roelofs JGM (2006) The effect of turf cutting on plant and arbuscular mycorrhizal spore recolonisation: implications for heathland restoration. Biol Conserv 129:226–235

    Article  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    PubMed  Article  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Article  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    PubMed  Article  Google Scholar 

  • Young JPW (2008) The genetic diversity of intraterrestrial aliens. New Phytol 178:465–468

    PubMed  Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by two research projects supported by Junta de Andalucía (Spain). Projects P06-CVI-01876 and P11-CVI-7107. We thank Sonia Molina for technical assistance and Domingo Álvarez (curator of the EEZ germplasm collection), for taking care of the native AMF inocula.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Ruiz-Lozano.

Additional information

Responsible Editor: Katharina Pawlowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Estrada, B., Aroca, R., Azcón-Aguilar, C. et al. Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant Soil 370, 175–185 (2013). https://doi.org/10.1007/s11104-013-1635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1635-y

Keywords

  • Native arbuscular mycorrhiza fungi
  • Mediterranean ecosystems
  • Halophyte
  • Restoration
  • Salinity