Advertisement

Plant and Soil

, Volume 370, Issue 1–2, pp 355–366 | Cite as

The influence of environmental degradation processes on the arbuscular mycorrhizal fungal community associated with yew (Taxus baccata L.), an endangered tree species from Mediterranean ecosystems of Southeast Spain

  • Álvaro López-García
  • Stefan Hempel
  • Juan de D. Miranda
  • Matthias C. Rillig
  • José M. Barea
  • Concepción Azcón-Aguilar
Regular Article

Abstract

Aims

To assess whether the yew roots, which are able to provide a very constant environment due to their long life-span, can maintain the original arbuscular mycorrhizal (AM) fungal community during yew population decline.

Methods

The diversity of AM fungi (AMF) colonizing the roots of yew was analyzed by selecting the small subunit ribosomal RNA genes to construct a database of the overall community of AMF in the experimental area. A terminal restriction fragment length polymorphism (TRFLP) approach was used to identify the AMF communities present in yew roots. Physiological and environmental variables related to topology and soil and plant characteristics were determined as markers of habitat degradation.

Results

The AMF communities within yew roots were found to be dependent on soil, plant and topological variables indicative of habitat degradation surrounding the yew. The phylogenetic diversity of AMF associated to the yews was lower in habitats more exposed to degradation than in those better conserved.

Conclusions

The target yews can be grouped into two degradation levels. AMF communities were also affected by the degradation processes affecting their hosts. This finding rules out the role of these trees as refugia for their original AMF community, a fact that should be considered in plant reintroduction programs using AMF as bioenhancers.

Keywords

Arbuscular mycorrhizal fungi Taxus baccata Mediterranean degraded areas TRFLP Refugial habitats 

Abbreviations

AM

Arbuscular mycorrhizal

AMF

Arbuscular mycorrhizal fungi

PCA

Principal component analysis

PCR

Polymerase chain reaction

RDA

Redundancy analysis

SLA

Specific leaf area

TRFLP

Terminal restriction fragment length polymorphism

Notes

Acknowledgments

A. López-García thanks the Formación de Personal Investigador Programme (Ministerio de Ciencia e Innovación, Spain) for financial support. This research was supported by the Spanish Goverment under the Plan Nacional de I+D+I (project CGL-2009-08825). We strongly thank Dr. I. Sánchez-Castro for the permission to use the Sierra de Baza AMF database created during his PhD Thesis. We also sincerely thank Professor P. Jeffries (Univ. of Kent) for grammatical corrections to the manuscript. We thank the Consejería de Medio Ambiente, Junta de Andalucía (Spain) for permission to work in Sierra de Baza Natural Park and to Drs. F. Bruno and J. Molero for helping us to identify and interpret vegetation inventories. Additionally, we would like to thank the two anonymous reviewers and the Section Editor for their valuable comments and suggestions to improve the manuscript.

Supplementary material

11104_2013_1625_MOESM1_ESM.doc (20 kb)
ESM 1 (DOC 19 kb)
11104_2013_1625_Fig5_ESM.jpg (78 kb)
Fig. S1

Neighbor-joining phylogenetic tree based on the NS31-AML2 fragment of the SSU rDNA gene. Sequences from single AMF spores and root samples from the Sierra de Baza Natural Park are showed together with reference sequences from GeneBank. Numbers above branches indicate the bootstrap values. Only topologies with values ≥50 % are shown (1,000 replicates). Sequences are labelled according to the data set from which it originated (Tb-root = obtained from T. baccata roots; SB-root = from roots of other plants characteristic of the site; SB-spore = from spores isolated from the Sierra de Baza Natural Park), followed by the clone identity number. Sequences having a pairwise similarity higher than 97 % were clustered as phylotypes (delimited by vertical lines). Phylotypes are named following the closest virtual taxa code of MaarjAM database (Öpik et al. 2010). The prefix corresponds to the glomeromycotan family (following Krüger et al. 2012): Aca-Acaulosporaceae, Glo-Glomeraceae, Cla-Claroideoglomeraceae, Par-Paraglomeraceae, Pac-Pacisporaceae, Div-Diversisporaceae and Gig-Gigasporaceae. Mortierella polycephala was used as out-group. To reduce the size of the tree, half of the sequences were removed (JPEG 78 kb)

11104_2013_1625_MOESM2_ESM.tif (10.2 mb)
High Resolution Image (TIFF 10489 kb)

References

  1. Allen MF (1988) Belowground structure: A key to reconstructing a productive arid ecosystem. In: Allen EB (ed) Reconstruction of disturbed arid ecosystems. Westview Press, Boulder, pp 113–135Google Scholar
  2. Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297CrossRefGoogle Scholar
  3. Angold PG (1997) The impact of a road upon adjacent heathland vegetation: effects on plant species composition. J Appl Ecol 34:409–417CrossRefGoogle Scholar
  4. Antunes PM, Koch AM, Dunfield KE, Hart MM, Downing A, Rillig MC, Klironomos JN (2009) Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317:257–266CrossRefGoogle Scholar
  5. Azcón-Aguilar C, Palenzuela J, Roldán A, Bautista S, Vallejo R, Barea JM (2003) Analysis of the mycorrhizal potential in the rizhosphere of representative plant species from desertification-threatened Mediterranean shrublands. Appl Soil Ecol 22:29–37CrossRefGoogle Scholar
  6. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 417:1761–1778CrossRefGoogle Scholar
  7. Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, López-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301CrossRefGoogle Scholar
  8. Blanca G, Morales C (1991) Flora del parque natural de la Sierra de Baza. University of Granada, GranadaGoogle Scholar
  9. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  10. Caravaca F, Alguacil MM, Barea JM, Roldán A (2005) Survival of inocula and native AM fungi species associated with shrubs in a degraded Mediterranean ecosistema. Soil Biol Biochem 37:227–233CrossRefGoogle Scholar
  11. Centro Nacional de Información Geográfica (2004) MDT200. Plan Nacional de Ortofotografía Aérea. Ministerio de Fomento, SpainGoogle Scholar
  12. Collins RE, Rocap G (2007) REPK: an analytical web server to select retriction endonucleases for terminal restriction fragment length polymorphism analysis. Nucleic Acids Res 35:W58–W62. doi: 10.1093/nar/gkm384 PubMedCrossRefGoogle Scholar
  13. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  14. Davison J, Öpik M, Daniell TJ, Moora M, Zobel M (2011) Arbuscular mycorrhizal fungal communitites in plant roots are not random assemblages. FEMS Microbiol Ecol 78:103–115PubMedCrossRefGoogle Scholar
  15. Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270PubMedCrossRefGoogle Scholar
  16. Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496Google Scholar
  17. FitzJohn RG, Dickie IA (2007) TRAMPR: an R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Mol Ecol Notes 7:583–587CrossRefGoogle Scholar
  18. Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117–127PubMedCrossRefGoogle Scholar
  19. García D, Zamora R, Hódar JA, Gómez JM, Castro J (2000) Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biol Conserv 95:31–38CrossRefGoogle Scholar
  20. Grilli G, Urcelay C, Galetto L (2012) Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native-exotic hosts. Plant Ecol 213:155–165CrossRefGoogle Scholar
  21. Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422CrossRefGoogle Scholar
  22. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol Electron 4Google Scholar
  23. Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol (Suppl) 105:1–102CrossRefGoogle Scholar
  24. Holland SM (2008) Analytic Rarefaction 1.3. http://strata.uga.edu/software/anRareReadme.html
  25. Ijdo M, Schtickzelle N, Cranenbrouck S, Declerk S (2010) Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122PubMedCrossRefGoogle Scholar
  26. Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176CrossRefGoogle Scholar
  27. Jeffries P, Barea JM (2012) Arbuscular mycorrhiza - a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The mycota, vol IX. Fungal Associations, 2nd edn. Springer-Verlag, Berlin, Heidelberg (in press)Google Scholar
  28. Johnson NC (2010) Resource stoichiometry elucidates th estructure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647PubMedCrossRefGoogle Scholar
  29. Junier P, Junier T, Witzel KP (2008) TRiFLe, a program for in silico terminal restriction fragment length polymorphism analysis with user-defined sequence sets. Appl Environ Microbiol 74:6452–6456PubMedCrossRefGoogle Scholar
  30. Junta de Andalucía (2003) Ortofotografía digital de Andalucía, provincia de Granada. Junta de Andalucía, SevillaGoogle Scholar
  31. Kéfi S, Rietkerk M, Alados CL, Pueyo Y, ElAich A, Papanastasis V, de Ruiter PC (2007) Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–218PubMedCrossRefGoogle Scholar
  32. Krüger M, Krüger C, Walker C, Stockinger H, Schüssler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984PubMedCrossRefGoogle Scholar
  33. Lee J, Lee S, Young PW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349PubMedCrossRefGoogle Scholar
  34. Lucas-Borja ME, Bastida F, Moreno JL, Nicolás C, Andres M, López FR, del Cerro A (2011) The effects of human trampling on the microbiological properties of soil and vegetation in mediterranean mountain areas. Land Degrad Dev 22:383–394CrossRefGoogle Scholar
  35. Malmivaara-Lämsä M, Hamberg L, Haapamäki E, Liski J, Kotze DJ, Lehvävirta S, Fritze H (2008) Edge effects and trampling in boreal urban forest fragments – impacts on the soil microbial community. Soil Biol Biochem 40:1612–1621CrossRefGoogle Scholar
  36. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  37. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  38. Mummey DL, Rillig MC (2008) Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol Ecol 64:260–270PubMedCrossRefGoogle Scholar
  39. Mummey DL, Clarke JT, Cole A, O’Connor BG, Gannon JE, Ramsey PW (2010) Spatial análisis reveals differences in soil microbiol community interactions between adjacent coniferous forest and clearcut ecosystems. Soil Biol Biochem 42:1138–1147CrossRefGoogle Scholar
  40. Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268CrossRefGoogle Scholar
  41. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2011) Vegan: Community ecology package. R package version 2.0-1. http://CRAN.R-project.org/package=vegan
  42. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. US gov Print Office, Washington DCGoogle Scholar
  43. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specifity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437PubMedCrossRefGoogle Scholar
  44. Öpik M, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MarrjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241PubMedCrossRefGoogle Scholar
  45. Ordiales-Plaza R (2000) Midebmp, Version 4.2. Estación Experimental de Zonas Áridas (CSIC), AlmeríaGoogle Scholar
  46. Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukariotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480PubMedCrossRefGoogle Scholar
  47. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  48. Pons A (1981) The History of the Mediterranean shrublands. In: Di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Elsevier Academic Press, Amsterdam, pp 131–138Google Scholar
  49. Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc B Biol Sci 276:4237–4245CrossRefGoogle Scholar
  50. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  51. Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified. Appl Environ Microbiol 67:495–498PubMedCrossRefGoogle Scholar
  52. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  53. Robinson-Boyer L, Grzyb I, Jeffries P (2009) Shifting the balance from qualitative to quantitative analysis of arbuscular mycorrhizal communities in field soils. Fungal Ecol 2:1–9CrossRefGoogle Scholar
  54. Sánchez-Castro I, Ferrol N, Barea JM (2012a) Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystem. J Arid Environ 80:1–9CrossRefGoogle Scholar
  55. Sánchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012b) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460PubMedCrossRefGoogle Scholar
  56. Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220Google Scholar
  57. Simon LM, Lalonde TD, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonising roots. Appl Environ Microbiol 58:291–295PubMedGoogle Scholar
  58. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier Academic Press, New YorkGoogle Scholar
  59. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  60. Thomas PA, Polwart A (2003) Taxus baccata L. J Ecol 91:489–524CrossRefGoogle Scholar
  61. Truscott AM, Palmer SCF, McGowan GM, Cape JN, Smart S (2005) Vegetation composition of roadside verges in Scotland: the effects of nitrogen deposition, disturbance and management. Environ Pollut 136:109–118PubMedCrossRefGoogle Scholar
  62. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1980) Flora Europaea, vols. 1-5. Cambridge University Press, CambridgeGoogle Scholar
  63. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  64. van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Álvaro López-García
    • 1
  • Stefan Hempel
    • 2
  • Juan de D. Miranda
    • 1
  • Matthias C. Rillig
    • 2
  • José M. Barea
    • 1
  • Concepción Azcón-Aguilar
    • 1
  1. 1.Soil Microbiology and Symbiotic Systems DepartmentEstación Experimental del Zaidín, CSICGranadaSpain
  2. 2.Plant Ecology, Institut für BiologieFreie Universität BerlinBerlinGermany

Personalised recommendations