Skip to main content
Log in

Root plasticity maintains growth of temperate grassland species under pulsed water supply

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The frequency of rain is predicted to change in high latitude areas with more precipitation in heavy, intense events interspersed by longer dry periods. These changes will modify soil drying cycles with unknown consequences for plant performance of temperate species.

Methods

We studied plant growth and root traits of juveniles of four grasses and four dicots growing in a greenhouse, when supplying the same total amount of water given either regular every other day or pulsed once a week.

Results

Pulsed water supply replenished soil moisture immediately after watering, but caused substantial drought stress at the end of the watering cycle, whereas regular watering caused more moderate but consistent drought. Grasses had lower water use efficiency in the pulsed watering compared to regular watering, whereas dicots showed no difference. Both grasses and dicots developed thinner roots, thus higher specific root length, and greater root length in the pulsed watering. Growth of dicots was slightly increased under pulsed watering.

Conclusions

Temperate species coped with pulsed water supply by eliciting two responses: i) persistent shoot growth, most likely by maximizing growth at peaks of soil moisture, thus compensating for slower growth during drought periods; ii) plasticity of root traits related to increased resource uptake. Both responses likely account for subtle improvement of growth under changed water supply conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bresser AHM, Berk MM, van den Born GJ, van Bree L, van Gaalen FW, Ligtvoet W, van Minnen JG, Witmer MCH (2005) The effects of climate change in the Netherlands. Netherlands Environmental Assessment Agency, Bilthoven, p 111

    Google Scholar 

  • Cahill JF, McNickle GG (2011) The behavioral ecology of nutrient roraging by plants. Annu Rev Ecol Syst 42:289–311

    Article  Google Scholar 

  • Chapin FS (1991) Integrated responses of plants to stress. BioScience 41:29–36

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Manéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas J, Poorter H (2003) A handbook of protocols for standardised and easy measurements of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  • de Kroon H, van der Zalm E, van Rheenen JWA, van Dijk A, Kreulen R (1998) The interaction between water and nitrogen translocation in a rhizomatous sedge (Carex flacca). Oecologia 116:38–49

    Article  Google Scholar 

  • de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009) A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant Cell Environ 32:704–712

    Article  PubMed  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR, Cerling TE, Mooney HA, Canadell JG (2002) C3 and C4 photosynthesis in encyclopedia of global environmental. Vol. II. Change the earth system: biological and ecological dimensions of global environmental change. Wiley, Chichester, pp 186–190

    Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Euro+Med 2006 Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/

  • Fay PA, Carlisle JD, Danner BT, Lett MS, McCarron JK, Stewart C, Knapp AK, Blair JM, Collins SL (2002) Altered rainfall patterns, gas exchange, and growth in grasses and forbs. Int J Plant Sci 163:549–557

    Article  Google Scholar 

  • Fernández RJ, Reynolds JF (2000) Potential growth and drought tolerance of eight desert grasses: lack of a trade-off? Oecologia 123:90–98

    Article  Google Scholar 

  • Ge Y, Chang J, Li WC, Sheng HY, Yue CL, Shan GYS (2003) Effect of soil moisture on the gas exchange of Changium smyrnioides and Anthriscus sylvestris. Biol Plant 47:605–608

    Article  Google Scholar 

  • Gebauer RLE, Ehleringer JR (2000) Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81:1415–1424

    Article  Google Scholar 

  • Gee GW, Or D (2002) Particle-size analysis. In: Dane JH, Toppe GC (eds) Methods of soil analysis. Part 4 Physical methods. Soil Science Society of America, Madison, pp 255–294

    Google Scholar 

  • Hagiwara Y, Kachi N, Suzuki JI (2010) Effects of temporal heterogeneity of water supply on the growth of Perilla frutescens depend on plant density. Ann Bot 106:173–181

    Article  PubMed  Google Scholar 

  • Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob Chang Biol 15:2894–2904

    Article  Google Scholar 

  • Hodge A (2010) Roots: the acquisition of water and nutrients from the heterogeneous soil environment. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progess in botany 71. Springer, Berlin Heidelberg, pp 307–337

    Chapter  Google Scholar 

  • Hutchings MJ, de Kroon H (1994) Foraging in plants - the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238

    Article  Google Scholar 

  • IPCC (2007) Intergovernmental Panel on Climate Change, Climate Change 2007: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Geneva (Switzerland). pp 0-104

  • Kinmonth-Schultz H, Kim SH (2011) Carbon gain, allocation and storage in rhizomes in response to elevated atmospheric carbon dioxide and nutrient supply in a perennial C 3 grass, Phalaris arundinacea. Funct Plant Biol 38:797–807

    Article  CAS  Google Scholar 

  • Klimešová J, Limeš LK (1996) Effects of rhizome age and nutrient availability on carbohydrate reserves in Rumex alpinus rhizomes. Biologia 51:457–461

    Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology. Springer, New York, p 604

    Book  Google Scholar 

  • Larcher W (2003) Physiological plant ecology. Springer, Berlin

    Book  Google Scholar 

  • Lundholm JT, Larson DW (2004) Experimental separation of resource quantity from temporal variability: seedling responses to water pulses. Oecologia 141:346–352

    Article  PubMed  Google Scholar 

  • Maestre FT, Reynolds JF (2007) Amount or pattern? Grassland responses to the heterogeneity and availability of two key resources. Ecology 88:501–511

    Article  PubMed  Google Scholar 

  • McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831

    Article  Google Scholar 

  • Metcalfe DB, Meir P, Aragão LEOC, da Costa ACL, Braga AP, Gonçalves PHL, de Athaydes Silva Junior J, de Almeida SS, Dawson LA, Malhi Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199

    Article  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96

    Article  Google Scholar 

  • Mommer L, van Ruijven J, de Caluwe H, Smit-Tiekstra AE, Wagemaker CAM, Ouborg NJ, Bögemann GM, van der Weerden GM, Berendse F, de Kroon H (2010) Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. J Ecol 98:1117–1127

    Article  Google Scholar 

  • Nicotra AB, Babicka N, Westoby M (2002) Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia 130:136–145

    Google Scholar 

  • Novoplansky A, Goldberg DE (2001) Effects of water pulsing on individual performance and competitive hierarchies in plants. J Veg Sci 12:199–208

    Article  Google Scholar 

  • Ogle K, Reynolds JF (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141:282–294

    Article  PubMed  Google Scholar 

  • Padilla FM, Miranda J, Pugnaire FI (2007) Early root growth plasticity in seedlings of three Mediterranean woody species. Plant Soil 296:103–113

    Article  CAS  Google Scholar 

  • Padilla FM, Miranda JD, Jorquera MJ, Pugnaire FI (2009) Variability in amount and frequency of water supply affects roots but not growth of arid shrubs. Plant Ecol 204:261–270

    Article  Google Scholar 

  • Patty L, Halloy SRP, Hiltbrunner E, Körner C (2010) Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora 205:695–703

    Article  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  PubMed  CAS  Google Scholar 

  • Rind D, Goldberg R, Ruedy R (1989) Change in climate variability in the 21st-Century. Clim Chang 14:5–37

    Article  CAS  Google Scholar 

  • Robinson TMP, Gross KL (2010) The impact of altered precipitation variability on annual weed species. Am J Bot 97:1625–1629

    Article  PubMed  Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578

    Article  CAS  Google Scholar 

  • Schwinning S, Starr BI, Ehleringer JR (2003) Dominant cold desert plants do not partition warm season precipitation by event size. Oecologia 136:252–260

    Article  PubMed  Google Scholar 

  • Schwinning S, Sala OE, Loik ME, Ehleringer JR (2004) Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141:191–193

    PubMed  Google Scholar 

  • Sher AA, Goldberg DE, Novoplansky A (2004) The effect of mean and variance in resource supply on survival of annuals from Mediterranean and desert environments. Oecologia 141:353–362

    Article  PubMed  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (2001) Flora Europaea. Cambridge University Press, Cambridge

    Google Scholar 

  • van der Hurk B, Tank AK, Lenderink G, van Ulden A, van Oldenborgh GJ, Katsman C, van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006) KNMI Climate Change Scenarios 2006 for the Netherlands. KNMI, De Bilt, p 82

    Google Scholar 

  • Van der Krift TAJ, Berendse F (2002) Root life spans of four grass species from habitats differing in nutrient availability. Funct Ecol 16:198–203

    Article  Google Scholar 

  • van Ruijven J, Berendse F (2005) Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc Natl Acad Sci U S A 102:695–700

    Article  PubMed  Google Scholar 

  • van Ruijven J, Berendse F (2009) Long-term persistence of a positive plant diversity-productivity relationship in the absence of legumes. Oikos 118:101–106

    Article  Google Scholar 

  • van Ruijven J, Berendse F (2010) Diversity enhances community recovery, but not resistance, after drought. J Ecol 98:81–86

    Article  Google Scholar 

  • Volis S, Mendlinger S, Ward D (2001) Differentiation in populations of Hordeum spontaneum Koch along a gradient of environmental productivity and predictability: plasticity in response to water and nutrient stress. Biol J Linn Soc 75:301–312

    Article  Google Scholar 

  • Wan C, Yilmaz I, Sosebee RE (2002) Seasonal soil-water availability influences snakeweed root dynamics. J Arid Environ 51:255–264

    Article  Google Scholar 

  • Wang L, de Kroon H, Smits AJM (2007) Combined effects of partial root drying and patchy fertilizer placement on nutrient acquisition and growth of oilseed rape. Plant Soil 295:207–216

    Article  CAS  Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53:941–952

    Article  Google Scholar 

  • Williams KJ, Wilsey BJ, McNaughton SJ, Banyikwa FF (1998) Temporally variable rainfall does not limit yields of Serengeti grasses. Oikos 81:463–470

    Article  Google Scholar 

  • Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J Ecol 87:85–97

    Article  Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA (2003) Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol Monogr 73:585–604

    Article  Google Scholar 

Download references

Acknowledgements

We thank Marloes Hendriks and Janneke Ravenek for help with root scanning, the staff of the Experimental Garden (IWWR, FNWI) of the Radboud University Nijmegen for taking care of the plants, Dr. Iván Prieto and three anonymous referees for reviewing earlier drafts. FMP was supported by a postdoc grant of the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Padilla.

Additional information

Responsible Editor: Tibor Kalapos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, F.M., Aarts, B.H.J., Roijendijk, Y.O.A. et al. Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant Soil 369, 377–386 (2013). https://doi.org/10.1007/s11104-012-1584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1584-x

Keywords

Navigation