Anspaugh LR, Catlin RJ, Goldman M (1988) The global impact of the Chernobyl reactor accident. Science 242:1513–1519
PubMed
Article
CAS
Google Scholar
Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163
Article
CAS
Google Scholar
Chaplot V, Podwojewski P, Phachomphon K, Valentin C (2009) Soil erosion impact on soil organic carbon spatial variability on steep tropical slopes. Soil Sci Soc Am J 73:769–779
Article
CAS
Google Scholar
Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, properties, and management of volcanic soils. Adv Agron 82:113–182
Article
CAS
Google Scholar
De Koning GHJ, Veldkamp A, Fresco LO (1998) Land use in Ecuador: a statistical analysis at different aggregation levels. Agric Ecosys Env 70:231–247
Article
Google Scholar
Eckert D, Sims JT (1995) Recommended soil pH and lime requirement tests. In: Sims JT, Wolf A (eds) Recommended soil testing procedures for the Northeastern United States. Northeast Regional Bulletin #493. Agricultural Experiment Station. University of Delaware, Newark, DE, pp 11–16
Eswaran H, Van Den Berg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194
Article
Google Scholar
Funk R, Li Y, Hoffmann C, Reiche M, Zhang Z, Li J, Sommer M (2012) Using 137Cs to estimate wind erosion and dust deposition on grassland in Inner Mongolia-selection of a reference site and description of the temporal variability. Plant Soil 351(1–2):293–307
Article
CAS
Google Scholar
Gonzalez AA, Maldonado F, Vallejo L (1986) Memoria explicativa del mapa general de suelos del Ecuador. Sociedad Ecuatoriana de la Ciencia del Suelo. 38 p
Hoyos N, Comerford NB (2005) Land use and landscape effects on aggregate stability and total carbon of Andisols from the Colombian Andes. Geoderma 129:268–278
Article
CAS
Google Scholar
Huygens D, Boeckx P, Van Cleemput O, Oyarzún C, Godoy R (2005) Aggregate and soil organic carbon dynamics in south Chilean Andisols. Biogeosciences 2:159–174
Article
CAS
Google Scholar
IAEA (2011) Impact of soil conservation measures on erosion control and soil quality. IAEA-TECDOC-1665. 200 p
Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org
Junge B, Mabit L, Dercon G, Walling DE, Abaidoo R, Chikoye D, Stahr K (2010) First use of the 137Cs technique in Nigeria for estimating medium-term soil redistribution rates on cultivated farmland. Soil Till Res 110:211–220
Article
Google Scholar
Kalra YP, Maynard DG (1991) Methods manual for forest soil and plant analysis. For. Can., Northwest Reg., North For. Cent., Edmonton, Alberta, Canada. Inf. Rep. NOR-X-319
Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627
PubMed
Article
CAS
Google Scholar
Li Y, Lindstrom MJ (2001) Evaluating soil quality-soil redistribution relationship on terraces and steep hillslope. Soil Sci Soc Am J 65:1500–1508
Article
CAS
Google Scholar
Li Y, Zhang QW, Reicosky DC, Bai LY, Lindstrom MJ, Li L (2006) Using 137Cs and 210Pbex for quantifying soil organic carbon redistribution affected by intensive tillage on steep slopes. Soil Till Res 86:176–184
Article
Google Scholar
Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of fallout radionuclides (137Cs, 210Pb and 7Be) to assess soil erosion and sedimentation. J Environ Radioact 99(12):1799–1807
PubMed
Article
CAS
Google Scholar
Mabit L, Martin PC, Jankong P, Toloza A, Padilla-Alvarez R, Zupanc V (2010) Establishment of control site baseline data for erosion studies using radionuclides: a case study in East Slovenia. J Environ Radioact 101(10):854–863
PubMed
Article
CAS
Google Scholar
Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416
Google Scholar
Molina A, Govers G, Poesen J, Van Hemelryck H, De Bièvre B, Vanacker V (2008) Environmental factors controlling spatial variation in sediment yield in a central Andean mountain area. Geomorphology 98:176–186
Article
Google Scholar
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphorus in natural waters. Anal Chim Acta 27:31–36
Google Scholar
Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods; SSSA Book Series No. 5. Soil Science Society of America, Madison, Wisconsin, pp 961–1010
Nierop KGJ, Tonneijck FH, Jansen B, Verstraten JM (2007) Organic matter in volcanic ash soils under forest and páramo along an Ecuadorian altitudinal transect. Soil Sci Soc Am J 71:1119–1127
Article
CAS
Google Scholar
Owens PN, Walling DE (1996) Spatial variability of caesium-137 inventories at reference sites: an example from two contrasting sites in England and Zimbabwe. Appl Radiat Isot 47:699–707
Article
CAS
Google Scholar
Pietsch D, Mabit L (2012) Terrace soils in the Yemen Highlands: using physical, chemical and radiometric data to assess their suitability for agriculture and their vulnerability to degradation. Geoderma 185–186:48–60
Article
Google Scholar
Porto P, Walling DE, Tamburino V, Callegari G (2003) Relating caesium-137 and soil loss from cultivated land. Catena 53:303–326
Article
CAS
Google Scholar
Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–328
Article
Google Scholar
Pryde JK, Osorio J, Wolfe ML, Heatwole C, Benham B, Cardenas A. 2007. Comparison of watershed boundaries derived from SRTM and ASTER digital elevation datasets and from a digitized topographic map. Paper number 072093, American Society of Agricultural and Biological Engineers
Quantum GIS Development Team (2009) Quantum GIS Geographic Information System, Open Source Geospatial Foundation Project. http://qgis.osgeo.org
Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19:215–233
Article
CAS
Google Scholar
Ritchie JC, Ritchie CA (2008) Bibliography of publications of 137Cs studies related to erosion and sediment deposition. http://www.ars.usda.gov
Tonneijck FH, Van der Plicht J, Jansen B, Verstraten JM, Hooghiemstra H (2006) Radiocarbon dating of soil organic matter fractions in Andosols in northern Ecuador. Radiocarbon 48:337–353
CAS
Google Scholar
Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173
Article
CAS
Google Scholar
Tyler AN, Carter S, Davidson DA, Long DJ, Tipping R (2001) The extent and significance of bioturbation on 137Cs distributions in upland soils. Catena 43:81–99
Article
CAS
Google Scholar
Vanacker V, Govers G, Barros S, Poesen J, Deckers J (2003) The effect of short-term socio-economic and demographic change on landuse dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador. Landscape Ecol 18:1–15
Article
Google Scholar
Vanacker V, von Blackenburg F, Molina A, Poesen J, Deckers J, Kubik P (2007) Restoring dense vegetation can slow mountain erosion to near natural benchmark levels. Geology 35:303–306
Article
Google Scholar
Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629
PubMed
Article
Google Scholar
Walling DE, He Q, Appleby PG (2002) Conversion models for use in soil-erosion, soil-redistribution and sedimentation investigations. In: Zapata F (ed) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 111–164, Chapter 7
Google Scholar
Walling DE, Zhang Y, He Q (2011) Models for deriving estimates of erosion and deposition rates from fallout radionuclide (caesium-137, excess lead-210, and beryllium-7) measurements and the development of user-friendly software for model implementation. In: Impact of soil conservation measures on erosion control and soil quality. IAEA-TECDOC-1665. pp 11–33
Yang MY, Tian JL, Liu PL (2006) Investigating the spatial distribution of soil erosion and deposition in a small catchment on the Loess Plateau of China, using 137Cs. Soil & Tillage Research 87:186–193
Article
Google Scholar
Zapata F (2002) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer, Dordrecht
Google Scholar
Zehetner F, Miller WP (2006) Soil variations along a climatic gradient in an Andean agro-ecosystem. Geoderma 137:126–134
Article
CAS
Google Scholar
Zupanc V, Mabit L (2010) Nuclear techniques support to assess erosion and sedimentation process: a preliminary step in investigating the use of 137Cs as soil tracer in Slovenia. Dela 33:21–36
Google Scholar