Skip to main content
Log in

Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders

Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Detailed analyses of root chemistry by branching order may provide insights into root function, root lifespan and the abundance of root-associated mycorrhizal fungi in forest ecosystems.

Methods

We examined the nitrogen and carbon stable isotopes (δ15N and δ13C) and concentration (%N and %C) in the fine roots of an arbuscular mycorrhizal tree, Fraxinus mandshurica, and an ectomycorrhizal tree, Larix gmelinii, over depth, time, and across five root branching orders.

Results and conclusions

Larix δ15N increased by 2.3 ‰ from 4th order to 1st order roots, reflecting the increased presence of 15N-enriched ECM fungi on the lower root orders. In contrast, arbuscular mycorrhizal Fraxinus only increased by 0.7 ‰ from 4th order to 1st order roots, reflecting the smaller 15N enrichment and lower fungal mass on arbuscular mycorrhizal fine roots. Isotopic and anatomical mass balance calculations indicate that first, second, and third order roots in ectomycorrhizal Larix averaged 36 %, 23 %, and 8 % fungal tissue by mass, respectively. Using literature values of root production by root branching order, we estimate that about 25 % of fine root production in ECM species like Larix is actually of fungal sheaths. In contrast to %N, %C, and δ15N, δ13C changed minimally across depth, time, and branching order. The homogeneity of δ13C suggests root tissues are constructed from a large well-mixed reservoir of carbon, although compound specific δ13C data is needed to fully interpret these patterns. The measurements developed here are an important step towards explicitly including mycorrhizal production in forest ecosystem carbon budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ECM:

Ectomycorrhizal

AM:

Arbuscular mycorrhizal

Larix :

Larix gmelinii

Fraxinus :

Fraxinus mandshurica

N:

Nitrogen

C:

Carbon

‰:

Per mil

References

  • Badeck FW, Tcherkez G, Nogues S, Piel C, Ghashghaie J (2005) Post-photo synthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun Mass Spectrom 19(11):1381–1391. doi:10.1002/rcm.1912

    Article  PubMed  CAS  Google Scholar 

  • Bauer GA, Gebauer G, Harrison AF, Hogberg P, Hogbom L, Schinkel H, Taylor ASF, Novak M, Buzek F, Harkness D, Persson T, Schulze ED (2000) Biotic and abiotic controls over ecosystem cycling of stable natural nitrogen, carbon and sulphur isotopes. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Springer, New York, pp 189–216

    Chapter  Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and C-13 enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153(1):89–98. doi:10.1007/s00442-007-0700-8

    Article  PubMed  Google Scholar 

  • Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, Dawson TE, Griffiths HG, Farquhar GD, Wright IJ (2009) Viewpoint: why are non-photosynthetic tissues generally (13)C enriched compared with leaves in C(3) plants? Review and synthesis of current hypotheses. Funct Plant Biol 36(3):199–213. doi:10.1071/fp08216

    Article  CAS  Google Scholar 

  • Courty PE, Walder F, Boller T, Ineichen K, Wiemken A, Rousteau A, Selosse MA (2011) Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol 156(2):952–961. doi:10.1104/pp. 111.177618

    Article  PubMed  CAS  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Penuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183(4):980–992. doi:10.1111/j.1469-8137.2009.02917.x

    Article  PubMed  CAS  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147(1):33–42. doi:10.1046/j.1469-8137.2000.00686.x

    Article  CAS  Google Scholar 

  • Fan P, Jiang Y (2010) Nitrogen dynamics differed among the first six root branch orders of Fraxinus mandshurica and Larix gmelinii during short-term decomposition. J Plant Res 123(4):433–438. doi:10.1007/s10265-009-0303-z

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol 40:503–537

    Article  CAS  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Cook AC, Markewitz D, Richter DD (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129(3):420–429

    Google Scholar 

  • Gaudinski JB, Torn MS, Riley WJ, Swanston C, Trumbore SE, Joslin JD, Majdi H, Dawson TE, Hanson PJ (2009) Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling. Glob Chang Biol 15(4):992–1014. doi:10.1111/j.1365-2486.2008.01736.x

    Article  Google Scholar 

  • Gebauer G, Schulze ED (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87(2):198–207. doi:10.1007/bf00325257

    Article  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM (2011) Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecol Monogr 81(1):89–102. doi:10.1890/09-2390.1

    Article  Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140(3):450–457. doi:10.1007/s00442-004-1596-1

    Article  PubMed  Google Scholar 

  • Guo DL, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008a) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177(2):443–456. doi:10.1111/j.1469-8137.2007.02242.x

    PubMed  Google Scholar 

  • Guo DL, Mitchell RJ, Withington JM, Fan P-P, Hendricks JJ (2008b) Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96(4):737–745. doi:10.1111/j.1365-2745.2008.01385.x

    Article  CAS  Google Scholar 

  • Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008c) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180(3):673–683. doi:10.1111/j.1469-8137.2008.02573.x

    Article  PubMed  Google Scholar 

  • Helle G, Schleser GH (2004) Beyond CO(2)-fixation by Rubisco—an interpretation of (13)C/(12)C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27(3):367–380. doi:10.1111/j.0016-8025.2003.01159.x

    Article  CAS  Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87(3):563–569. doi:10.1890/05-0755

    Article  PubMed  Google Scholar 

  • Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157(1):115–126. doi:10.1046/j.1469-8137.2003.00657.x

    Article  CAS  Google Scholar 

  • Hobbie EA, Colpaert JV (2004) Nitrogen availability and mycorrhizal colonization influence water use efficiency and carbon isotope patterns in Pinus sylvestris. New Phytol 164(3):515–525. doi:10.1111/j.1469-8137.2004.01187.x

    Article  Google Scholar 

  • Hobbie JE, Hobbie EA (2006) N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87(4):816–822. doi:10.1890/0012-9658(2006)87[816:nisfap]2.0.co;2

    Article  PubMed  Google Scholar 

  • Hobbie EA, Hobbie JE (2008) Natural abundance of N-15 in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11(5):815–830. doi:10.1007/s10021-008-9159-7

    Article  CAS  Google Scholar 

  • Hobbie EA, Ouimette AP (2009) Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95(2–3):355–371. doi:10.1007/s10533-009-9328-6

    Article  CAS  Google Scholar 

  • Hobbie EA, Werner RA (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C-3 and C-4 plants: a review and synthesis. New Phytol 161(2):371–385. doi:10.1046/j.1469-8137.2004.00970.x

    Article  CAS  Google Scholar 

  • Hobbie EA, Colpaert JV, White MW, Ouimette AP, Macko SA (2008) Nitrogen form, availability, and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris. Plant Soil 310(1–2):121–136. doi:10.1007/s11104-008-9637-x

    Article  CAS  Google Scholar 

  • Hobbie EA, Sanchez FS, Rygiewicz PT (2012) Controls of isotopic patterns in saprotrophic and ectomycorrhizal fungi. Soil Biol Biochem 48:60–68

    Article  CAS  Google Scholar 

  • Högberg P (1997) Tansley review No 95 - N-15 natural abundance in soil-plant systems. New Phytol 137(2):179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  • Högberg P, Hogbom L, Schinkel H, Högberg M, Johannisson C, Wallmark H (1996) N-15 abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108(2):207–214

    Google Scholar 

  • Högberg P, Högberg MN, Gottlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Nasholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177(1):220–228. doi:10.1111/j.1469-8137.2007.02238.x

    PubMed  Google Scholar 

  • Hunt HW, Reuss DE, Elliott ET (1999) Correcting estimates of root chemical composition for soil contamination. Ecology 80(2):702–707. doi:10.2307/176645

    Article  Google Scholar 

  • Janzen HH, Entz T, Ellert BH (2002) Correcting mathematically for soil adhering to root samples. Soil Biol Biochem 34(12):1965–1968. doi:10.1016/s0038-0717(02)00206-7

    Article  CAS  Google Scholar 

  • Jia SX, Wang ZQ, Li XP, Zhang XP, McLaughlin NB (2011) Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiol 31(7):718–726. doi:10.1093/treephys/tpr057

    Article  PubMed  Google Scholar 

  • Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006) Fine-root turnover patterns and their relationship to root diameter and soil depth in a C-14-labeled hardwood forest. New Phytol 172(3):523–535. doi:10.1111/j.1469-8137.2006.01847.x

    Article  PubMed  CAS  Google Scholar 

  • Keel SG, Siegwolf RTW, Korner C (2006) Canopy CO(2) enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172(2):319–329. doi:10.1111/j.1469-8137.2006.01831.x

    Article  PubMed  CAS  Google Scholar 

  • King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002) Below-ground carbon in put to soil is control led by nutrient availability and fine root dynamics in loblolly pine. New Phytol 154(2):389–398. doi:10.1046/j.1469-8137.2002.00393.x

    Article  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84(9):2302–2312. doi:10.1890/02-0282

    Article  Google Scholar 

  • Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett 9(8):955–959. doi:10.1111/j.1461-0248.2006.00948.x

    Article  PubMed  Google Scholar 

  • Litton CM, Giardina CP (2008) Below-ground carbon flux and partitioning: global patterns and response to temperature. Funct Ecol 22(6):941–954. doi:10.1111/j.1365-2435.2008.01479.x

    Article  Google Scholar 

  • Majdi H, Damm E, Nylund JE (2001) Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytol 150(1):195–202. doi:10.1046/j.1469-8137.2001.00065.x

    Article  Google Scholar 

  • Marron N, Plain C, Longdoz B, Epron D (2009) Seasonal and daily time course of the (13)C composition in soil CO(2) efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant Soil 318(1–2):137–151. doi:10.1007/s11104-008-9824-9

    Article  CAS  Google Scholar 

  • Mayor JR, Schuur EAG, Henkel TW (2009) Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol Lett 12(2):171–183. doi:10.1111/j.1461-0248.2008.01265.x

    Article  PubMed  Google Scholar 

  • Mei L, Gu J, Zhang Z, Wang Z (2010) Responses of fine root mass, length, production and turnover to soil nitrogen fertilization in Larix gmelinii and Fraxinus mandshurica forests in Northeastern China. J For Res 15(3):194–201. doi:10.1007/s10310-009-0176-y

    Article  CAS  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant N-15 natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115(3):406–418. doi:10.1007/s004420050535

    Article  Google Scholar 

  • Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14(5):493–502. doi:10.1111/j.1461-0248.2011.01611.x

    Article  PubMed  Google Scholar 

  • Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjonaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W (2006) Regional assessment of N saturation using foliar and root delta N-15. Biogeochemistry 80(2):143–171. doi:10.1007/s10533-006-9015-9

    Article  Google Scholar 

  • Pate J, Arthur D (1998) delta C-13 analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia 117(3):301–311. doi:10.1007/s004420050663

    Article  Google Scholar 

  • Polley HW, Johnson HB, Mayeux HS (1992) Determination of root biomasses of 3 species grown in a mixture using stable isotopes of carbon and nitrogen. Plant Soil 142(1):97–106

    CAS  Google Scholar 

  • Pregitzer KS (2002) Fine roots of trees—a new perspective. New Phytol 154(2):267–270. doi:10.1046/j.1469-8137.2002.00413_1.x

    Article  Google Scholar 

  • Pregitzer KS (2008) Tree root architecture—form and function. New Phytol 180(3):562–564. doi:10.1111/j.1469-8137.2008.02648.x

    Article  PubMed  Google Scholar 

  • Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997) Relationships among roof branch order, carbon, and nitrogen in four temperate species. Oecologia 111(3):302–308. doi:10.1007/s004420050239

    Article  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72(2):293–309. doi:10.1890/0012-9615(2002)072[0293:fraonn]2.0.co;2

    Article  Google Scholar 

  • Robinson D (2001) delta N-15 as an integrator of the nitrogen cycle. Trends Ecol Evol 16(3):153–162. doi:10.1016/s0169-5347(00)02098-x

    Article  PubMed  Google Scholar 

  • Sah SP, Jungner H, Oinonen M, Kukkola M, Helmisaari HS (2011) Does the age of fine root carbon indicate the age of fine roots in boreal forests? Biogeochemistry 104(1–3):91–102. doi:10.1007/s10533-010-9485-7

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14. Science 300(5622):1138–1140. doi:10.1126/science.1084269

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Gu J-C, Zhuang H-F, Wang Z-Q (2010) Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China. Ecol Res 25(2):295–302. doi:10.1007/s11284-009-0654-x

    Article  Google Scholar 

  • Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck AH (2003) Species level patterns in C-13 and N-15 abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol 159(3):757–774. doi:10.1046/j.1469-8137.2003.00838.x

    Article  CAS  Google Scholar 

  • Templer PH, Arthur MA, Lovett GM, Weathers KC (2007) Plant and soil natural abundance delta(15)N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia 153(2):399–406. doi:10.1007/s00442-007-0746-7

    Article  PubMed  Google Scholar 

  • Trudell SA, Rygiewicz PT, Edmonds RL (2004) Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytol 164(2):317–335. doi:10.1111/j.1469-8137.2004.01162.x

    Article  Google Scholar 

  • Wallander H, Goransson H, Rosengren U (2004) Production, standing biomass and natural abundance of N-15 and C-13 in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139(1):89–97. doi:10.1007/s00442-003-1477-z

    Article  PubMed  Google Scholar 

  • Wang Z, Guo D, Wang X, Gu J, Mei L (2006) Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant Soil 288(1–2):155–171. doi:10.1007/s11104-006-9101-8

    Article  CAS  Google Scholar 

  • Xia M, Guo D, Pregitzer KS (2010) Ephemeral root modules in Fraxinus mandshurica. New Phytol 188(4):1065–1074. doi:10.1111/j.1469-8137.2010.03423.x

    Article  PubMed  Google Scholar 

  • Zadworny M, Eissenstat DM (2011) Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots. New Phytol 190:213–221

    Article  Google Scholar 

  • Zhou XF (1994) Long-term research on China’s forest ecosystems. Northeast Forestry University Press, Harbin, in Chinese

    Google Scholar 

Download references

Acknowledgments

Support for this project came from a grant awarded by the US Department of Energy (DOE). The manuscript was improved by critical reviews from Luke McCormack and Lucie Lepine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Ouimette.

Additional information

Responsible Editor: Angela Hodge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouimette, A., Guo, D., Hobbie, E. et al. Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders. Plant Soil 367, 313–326 (2013). https://doi.org/10.1007/s11104-012-1464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1464-4

Keywords

Navigation