Skip to main content
Log in

Response of soil microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Exotic species, nitrogen (N) deposition, and grazing are major drivers of change in grasslands. However little is known about the interactive effects of these factors on below-ground microbial communities.

Methods

We simulated realistic N deposition increases with low-level fertilization and manipulated grazing with fencing in a split-plot experiment in California’s largest serpentine grassland. We also monitored grazing intensity using camera traps and measured total available N to assess grazing and nutrient enrichment effects on microbial extracellular enzyme activity (EEA), microbial N mineralization, and respiration rates in soil.

Results

Continuous measures of grazing intensity and N availability showed that increased grazing and N were correlated with increased microbial activity and were stronger predictors than the categorical grazing and fertilization measures. Exotic cover was also generally correlated with increased microbial activity resulting from exotic-driven nutrient cycling alterations. Seasonal effects, on abiotic factors and plant phenology, were also an important factor in EEA with lower activity occurring at peak plant biomass.

Conclusions

In combination with previous studies from this serpentine grassland, our results suggest that grazing intensity and soil N availability may affect the soil microbial community indirectly via effects on exotic cover and associated changes in nutrient cycling while grazing directly impacts soil community function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CBH:

Cellobiohydrolase

EEA:

Extracellular enzyme assay

LAP:

L-leucine aminopeptidase

NAG:

β-1,4-N-acetylglucosaminidase

PHOS:

Phosphatase

XYL:

β-xylopyranoside

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems - hypotheses revisited. Bioscience 48(11):921–934

    Article  Google Scholar 

  • Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai'i. Oecologia 141(4):612–619. doi:10.1007/S00442-004-1679-Z

    Article  PubMed  Google Scholar 

  • Allison SD, Nielsen C, Hughes RF (2006) Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana. Soil Biol Biochem 38(7):1537–1544. doi:10.1016/J.Soilbio.2005.11.008

    Article  CAS  Google Scholar 

  • Bardgett RD, Leemans DK (1995) The short-term effects of cessation of fertilizer applications, liming, and grazing on microbial biomass and activity in a reseeded upland grassland soil. Biol Fert Soils 19(2–3):148–154

    Article  Google Scholar 

  • Bardgett RD, Leemans DK, Cook R, Hobbs PJ (1997) Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biol Biochem 29(8):1285–1294

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: How plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30(14):1867–1878

    Article  CAS  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8(2):217–230. doi:10.1007/s10530-004-3856-8

    Article  Google Scholar 

  • Batten KM, Scow KM, Espeland EK (2008) Soil microbial community associated with an invasive grass differentially impacts native plant performance. Microb Ecol 55(2):220–228. doi:10.1007/s00248-007-9269-3

    Article  PubMed  Google Scholar 

  • Bell TH, Klironomos JN, Henry HAL (2010) Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Sci Soc Am J 74(3):820–828. doi:10.2136/sssaj2009.0036

    Article  CAS  Google Scholar 

  • Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40(2):344–353. doi:10.1046/j.1365-2664.2003.00789.x

    Article  Google Scholar 

  • Carreiro M, Sinsabaugh R, Repert D, Parkhurst D (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81(9):2359–2365

    Article  Google Scholar 

  • Carson WP, Barrett GW (1988) Succession in old-field plant-communities - effects of contrasting types of nutrient enrichment. Ecology 69(4):984–994

    Article  Google Scholar 

  • Chen H, Liu J, Zhang YL, Wang Q, Ge XL, Wei YH, Wang RQ (2011) Influence of invasive plant Coreopsis grandiflora on functional diversity of soil microbial communities. J Environ Biol 32(5):567–572

    Google Scholar 

  • Clegg CD (2006) Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Appl Soil Ecol 31(1–2):73–82. doi:10.1016/j.apsoil.2005.04.003

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14(4):135–139

    Article  PubMed  Google Scholar 

  • Dukes JS, Chiariello NR, Loarie SR, Field CB (2011) Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecol Appl 21(6):1887–1894

    Article  PubMed  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6):503–523. doi:10.1007/S10021-002-0151-3

    Article  CAS  Google Scholar 

  • Ehrenfeld JG, Kourtev P, Huang WZ (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11(5):1287–1300

    Article  Google Scholar 

  • Elam DR, Wright DH, Goettle B (1998) Recovery plan for serpentine soil species of the San Francisco Bay area. Portland, Oregon

  • Fenn ME, Allen EB, Weiss SB, Jovan S, Geiser LH, Tonnesen GS, Johnson RF, Rao LE, Gimeno BS, Yuan F, Meixner T, Bytnerowicz A (2010) Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. J Environ Manage 91(12):2404–2423. doi:10.1016/J.Jenvman.2010.07.034

    Article  PubMed  CAS  Google Scholar 

  • Foreman CM, Franchini P, Sinsabaugh RL (1998) The trophic dynamics of riverine bacterioplankton: Relationships among substrate availability, ectoenzyme kinetics, and growth. Limnol Oceanogr 43(6):1344–1352

    Article  CAS  Google Scholar 

  • Franck VM, Hungate BA, Chapin FS, Field CB (1997) Decomposition of litter produced under elevated CO2: Dependence on plant species and nutrient supply. Biogeochemistry 36(3):223–237

    Article  Google Scholar 

  • Gelbard JL, Harrison S (2003) Roadless habitats as refuges for native grasslands: interactions with soil, aspect, and grazing. Ecol Appl 13(2):404–415

    Article  Google Scholar 

  • German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43(7):1387–1397. doi:10.1016/j.soilbio.2011.03.017

    Article  CAS  Google Scholar 

  • Gutknecht JLM, Henry HAL, Balser TC (2010) Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia 53(5):283–293. doi:10.1016/j.pedobi.2010.02.001

    Article  CAS  Google Scholar 

  • Henry HAL, Juarez JD, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Glob Change Biol 11(10):1808–1815

    Article  Google Scholar 

  • Hernandez DL, Hobbie SE (2010) The effects of substrate composition, quantity, and diversity on microbial activity. Plant Soil 335(1–2):397–411. doi:10.1007/s11104-010-0428-9

    Article  CAS  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion - implications for conservation. Conserv Biol 6(3):324–337

    Article  Google Scholar 

  • Hobbs RJ, Gulmon SL, Hobbs VJ, Mooney HA (1988) Effects of fertilizer addition and subsequent gopher disturbance on a serpentine annual grassland community. Oecologia 75(2):291–295

    Article  Google Scholar 

  • Holland EA, Detling JK (1990) Plant-response to herbivory and belowground nitrogen cycling. Ecology 71(3):1040–1049

    Article  Google Scholar 

  • Holly DC, Ervin GN, Jackson CR, Diehl SV, Kirker GT (2009) Effect of an invasive grass on ambient rates of decomposition and microbial community structure: A search for causality. Biol Invasions 11(8):1855–1868. doi:10.1007/s10530-008-9364-5

    Article  Google Scholar 

  • Holmes TH, Rice KJ (1996) Patterns of growth and soil-water utilization in some exotic annuals and native perennial bunchgrasses of California. Ann Bot-London 78(2):233–243

    Article  Google Scholar 

  • Holt JA (1997) Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Appl Soil Ecol 5(2):143–149

    Article  Google Scholar 

  • Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71(2):478–491

    Article  Google Scholar 

  • ICF International (2010) Draft Santa Clara Valley habitat plan. Santa Clara County

  • Jones JM, Evans RA (1960) Botanical composition changes in annual grassland as affected by ferlization and grazing. Agron J 52:459–461

    Article  Google Scholar 

  • Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: Implications for litter and soil organic matter decomposition. Ecosystems 12(1):1–15. doi:10.1007/s10021-008-9199-z

    Article  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11):3152–3166

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35(7):895–905. doi:10.1016/s0038-0717(03)00120-2

    Article  CAS  Google Scholar 

  • Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol 177(3):706–714. doi:10.1111/J.1469-8137.2007.02290.X

    Article  PubMed  CAS  Google Scholar 

  • Maly MS, Barrett GW (1984) Effects of two types of nutrient enrichment on the structure and function of contrasting old-field communities. Am Midl Nat 111(2):342–357

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72(1):242–253

    Article  Google Scholar 

  • O'Dell RE, Claassen VP (2006) Relative performance of native and exotic grass species in response to amendment of drastically disturbed serpentine substrates. J Appl Ecol 43(5):898–908. doi:10.1111/J.1365-2664.2006.01193.X

    Article  Google Scholar 

  • Ostertag R, Verville JH (2002) Fertilization with nitrogen and phosphorus increases abundance of non-native species in Hawaiian montane forests. Plant Ecol 162(1):77–90

    Article  Google Scholar 

  • Pasari JR (2011) Grassland invasion, management, and multifunctionality. Dissertation, University of California, Santa Cruz, Santa Cruz, CA

  • Pasari JR, Selmants PC, Young H, O'Leary J, Zavaleta ES (2011) Nitrogen enrichment. In: Rejmanek M, Simberloff D (eds) The encyclopedia of invasive species. University of California Press, pp 488–492

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RDC (2011) nlme: Linear and nonlinear mixed effects models. R package version 3.1–101

  • Prieto LH, Bertiller MB, Carrera AL, Olivera NL (2011) Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina. Geoderma 162(3–4):281–287. doi:10.1016/J.Geoderma.2011.02.011

    Article  CAS  Google Scholar 

  • Safford HD, Harrison SP (2001) Grazing and substrate interact to affect native vs. exotic diversity in roadside grasslands. Ecol Appl 11(4):1112–1122

    Article  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh R, Zak D (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Shariff AR, Biondini ME, Grygiel CE (1994) Grazing intensity effects on litter decomposition and soil-nitrogen mineralization. J Range Manage 47(6):444–449

    Article  Google Scholar 

  • Sinsabaugh RL (1994) Enzymatic analysis of microbial pattern and process. Biol Fert Soils 17(1):69–74

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60(1):1–24

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11(11):1252–1264. doi:10.1111/j.1461-0248.2008.01245.x

    PubMed  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil-water content. Soil Sci Soc Am J 54(6):1619–1625

    Article  Google Scholar 

  • Stromberg MR, Corbin JD, D'Antonio CM (2007) California grasslands: ecology and management. University of California Press, Berkeley, California

    Google Scholar 

  • Stursova M, Crenshaw CL, Sinsabaugh RL (2006) Microbial responses to long-term N deposition in a semiarid grassland. Microb Ecol 51(1):90–98. doi:10.1007/s00248-005-5156-y

    Article  PubMed  Google Scholar 

  • Tilman D (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57(3):189–214

    Article  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol Lett 11(10):1111–1120. doi:10.1111/J.1461-0248.2008.01230.X

    Article  PubMed  Google Scholar 

  • Turitzin SN (1982) Nutrient limitations to plant growth in a California serpentine grassland. Am Midl Nat 107(1):95–99

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourthth edn. Springer, New York

    Book  Google Scholar 

  • Weiss SB (1999) Cars, cows, and checkerspot butterflies: nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conserv Biol 13(6):1476–1486

    Article  Google Scholar 

  • Weiss SB, Wright DH, Niederer C (2007) Serpentine vegetation management project. United States Fish and Wildlife Service

  • Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55(6):477–487

    Article  Google Scholar 

  • Xu YQ, Li LH, Wang QB, Chen QS, Cheng WX (2007) The pattern between nitrogen mineralization and grazing intensities in an inner Mongolian typical steppe. Plant Soil 300(1–2):289–300. doi:10.1007/S11104-007-9416-0

    Article  CAS  Google Scholar 

  • Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154(2):349–359. doi:10.1007/s00442-007-0836-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from the Kearney Foundation for Soil Science. We thank Christal Niederer for her assistance with fieldwork and Bonnie Keeler for her useful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen H. Esch.

Additional information

Responsible Editor: Angela Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esch, E.H., Hernández, D.L., Pasari, J.R. et al. Response of soil microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland. Plant Soil 366, 671–682 (2013). https://doi.org/10.1007/s11104-012-1463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1463-5

Keywords

Navigation