Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain

Abstract

Aims

Dehesas are agroforestry systems characterized by scattered trees among pastures, crops and/or fallows. A study at a Spanish dehesa has been carried out to estimate the spatial distribution of the soil organic carbon stock and to assess the influence of the tree cover.

Methods

The soil organic carbon stock was estimated from the five uppermost cm of the mineral soil with high spatial resolution at two plots with different grazing intensities. The Universal Kriging technique was used to assess the spatial distribution of the soil organic carbon stocks, using tree coverage within a buffering area as an auxiliary variable.

Results

A significant positive correlation between tree presence and soil organic carbon stocks up to distances of around 8 m from the trees was found. The tree crown cover within a buffer up to a distance similar to the crown radius around the point absorbed 30 % of the variance in the model for both grazing intensities, but residual variance showed stronger spatial autocorrelation under regular grazing conditions.

Conclusions

Tree cover increases soil organic carbon stocks, and can be satisfactorily estimated by means of crown parameters. However, other factors are involved in the spatial pattern of the soil organic carbon distribution. Livestock plays an interactive role together with tree presence in soil organic carbon distribution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Barba L, Carretero JM, García A, García J, López A, Mainer C, Olea L, Palacios E, Ruiz E, San Miguel A, Serrada R, Solano JM, Velasco A (2008) Plan Nacional de Dehesas. Ministerio de Medio Ambiente, Medio Rural y Marino, Madrid

    Google Scholar 

  2. Blake GR, Hartge KH (1986) Bulk Density. In: Klute A (ed) Methods of soil analysis. Part 1: Physical and mineralogical methods, 5th edn. Soil Science Society of America, Madison, WI, pp 363–375

    Google Scholar 

  3. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  4. Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecol Manag 223:45–53. doi:10.1016/j.foreco.2005.10.056

    Article  Google Scholar 

  5. Chen F, Kissell DE, West LT, Adkins W (2000) Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Sci Soc Am J 64:746–753. doi:10.2136/sssaj2000.642746x

    Article  CAS  Google Scholar 

  6. Chiti T, Díaz-Pinés E, Rubio A (2012). Soil organic carbon stocks of conifers, broadleaf and evergreen broadleaf forests of Spain. Biology and Fertility of Soils (in press) doi 10.1007/s00374-012-0676-3

  7. Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  8. Díaz-Pinés E, Rubio A, Van Miegroet H, Benito M, Montes F (2011) Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? Forest Ecol Manag 262:1895–1904. doi:10.1016/j.foreco.2011.02.004

    Article  Google Scholar 

  9. Ellert B, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538. doi:10.4141/cjss95-075

    Article  CAS  Google Scholar 

  10. Escudero A, García B, Gómez JM, Luis E (1985) The nutrient cycling in Quercus rotundifolia and Quercus pyrenaica ecosystems (dehesas) of Spain. Acta Oecol Oecol Plant 6:73–86

    CAS  Google Scholar 

  11. Escudero A, Del Arco JM, Garrido MV (1992) The efficiency of nitrogen retranslocation from leaf biomass in Quercus ilex ecosystems. Vegetatio 99–100:225–237. doi:10.1007/BF00118229

    Article  Google Scholar 

  12. FAO (2004) Carbon sequestration in dryland soils. World soil resources reports 102. Rome

  13. Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia 47:117–125. doi:10.1078/0031-4056-00175

    Article  CAS  Google Scholar 

  14. Gallardo A, Covelo F (2005) Spatial pattern and scale of leaf N and P concentration in a Quercus robur population. Plant Soil 273:269–277. doi:10.1007/s11104-004-7943-5

    Article  CAS  Google Scholar 

  15. Gallardo A, Maestre FT (2008) Métodos geoestadísticos para el análisis de datos ecológicos espacialmente explícitos. In: Maestre FT, Escudero A, Bonet A (eds) Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones. Universidad Rey Juan Carlos, pp 215–272

  16. Gallardo A, Merino J (1998) Soil nitrogen dynamics in response to carbon increase in a Mediterranean shrubland of SW Spain. Soil Biol Biochem 30:1349–1358. doi:10.1016/S0038-0717(97)00265-4

    Article  CAS  Google Scholar 

  17. Gallardo A, Rodríguez-Saucedo JJ, Covelo F, Fernández-Alés R (2000) Soil nitrogen heterogeneity in a Dehesa ecosystem. Plant Soil 222:71–82. doi:10.1023/A:1004725927358

    Article  CAS  Google Scholar 

  18. Garrity D, Okono A, Grayson M, Parrott S (eds) (2006) World agroforestry into the future. World Agroforesty Centre, Nairobi

    Google Scholar 

  19. Gea G, Montero G, Cañellas I (2009) Changes in limiting resources determine spatio-temporal variability in tree–grass interactions. Agroforest Syst 76:375–387. doi:10.1007/s10457-009-9211-4

    Article  Google Scholar 

  20. Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45. doi:10.1016/S0016-7061(98)00078-0

    Article  Google Scholar 

  21. Goreaud F, Pélissier R (1999) On explicit formulas of edge effect correction for Ripley's K-function. J Veg Sci 10:433–438. doi:10.2307/3237072

    Article  Google Scholar 

  22. Gotway CA, Stroup WW (1997) A generalized linear model approach to spatial data analysis and prediction. J Agr Biol Environ Stat 2:157–178. doi:10.2307/1400401

    Article  Google Scholar 

  23. Harville DA (1974) Bayesian inference for variance components using only error contrasts. Biometrika 61:383–385. doi:10.1093/biomet/61.2.383

    Article  Google Scholar 

  24. He F, Legendre P, LaFrankie JV (1996) Spatial pattern of diversity in a tropical rain forest in Malaysia. J Biogeogr 23:57–74. doi:10.1046/j.1365-2699.1996.00976.x

    Article  Google Scholar 

  25. IPCC (2007) Climate change 2007: synthesis report summary for policymakers. Paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneve

    Google Scholar 

  26. IUSS Working Group WRB (2007) World reference base for soil resources 2006. First update 2007. World soil resources reports no. 103. FAO, Rome

    Google Scholar 

  27. Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity around individual perennial plants. J Ecol 81:683–692. doi:10.2307/2261666

    Article  Google Scholar 

  28. Joffre R, Rambal S (1988) Soil water improvement by trees in the rangelands of southern Spain. Oecologia Plantarum 9:405–422

    Google Scholar 

  29. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforest Syst 45:57–79. doi:10.1023/A:1006259402496

    Article  Google Scholar 

  30. Kandeler E, Stemmer M, Gerzabek MH (2005) Role of microorganisms in carbon cycling in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, Heidelberg, pp 139–157

    Google Scholar 

  31. Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21–51. doi:10.1023/A:1006238902976

    Article  CAS  Google Scholar 

  32. Lark RM (2000) A geostatistical extension of the sectioning procedure for disaggregating soil information to the scale of functional models of soils processes. Geoderma 95:89–112. doi:10.1016/S0016-7061(99)00086-5

    Article  Google Scholar 

  33. Laslett GM, McBratney AB, Pahl PJ, Hutchinson MF (1987) Comparison of several spatial prediction methods for soil pH. J Soil Sci 38:325–341. doi:10.1111/j.1365-2389.1987.tb02148.x

    Article  CAS  Google Scholar 

  34. Li Y, Tenhunen J, Mirzaei H, Hussain MZ, Siebicke L, Foken T, Otieno D, Schmidt M, Ribeiro N, Aires L, Pio C, Banza J, Pereira J (2008) Assessment and up-scaling of CO2 exchange by patches of the herbaceous vegetation mosaic in a Portuguese cork oak woodland. Agr Forest Meteorol 148:1318–1331. doi:10.1016/j.agrformet.2008.03.013

    Article  Google Scholar 

  35. Lister AJ, Mou PM, Jones RH, Mitchell RJ (2000) Spatial patterns of soil and vegetation in a 40-year-old slash pine (Pinus elliottii) forest in the Coastal Plain of South Carolina, U.S.A. Can J For Res 30:145–155 doi:10.1139/x99-196

    Google Scholar 

  36. Loosmore NB, Ford ED (2006) Statistical inference using the G or K point pattern spatial statistics. Ecology 87: 1925–1931. http://dx.doi.org/10.1890/0012-9658(2006)87[1925:SIUTGO]2.0.CO;2]

  37. Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5:439–468

    Article  Google Scholar 

  38. Montes F, Cañellas I (2007) The spatial relationship between post-crop remaining trees and the establishment of saplings in Pinus sylvestris stands in Spain. Appl Vegetation Sci 10:151–160. doi:10.1111/j.1654-109X.2007.tb00513.x

    Google Scholar 

  39. Montes F, Ledo A (2010) Incorporating environmental and geographical information in forest data analysis: a new fitting approach for universal kriging. Can J For Res 40:1852–1861. doi:10.1139/X10-131

    Article  Google Scholar 

  40. Moreno G (2008) Response of understorey forage to multiple tree effects in Iberian dehesas. Agr Ecosyst Environ 123:239–244. doi:10.1016/j.agee.2007.04.006

    Article  Google Scholar 

  41. Moreno G, Obrador JJ (2007) Effects of trees and understorey management on soil fertility and nutritional status of holm oaks in Spanish dehesas. Nutr Cycl Agroecosys 78:253–264. doi:10.1007/s10705-007-9089-3

    Article  CAS  Google Scholar 

  42. Moreno G, Pulido F. (2008) The functioning, management and persistence of dehesas. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Current Status and Future Prospects Springer Netherlands, pp 127–160

  43. Moreno G, Obrador JJ, García A (2007) Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agr Ecosyst Environ 119:270–280. doi:10.1016/j.agee.2006.07.013

    Article  CAS  Google Scholar 

  44. Mueller TG, Pierce FJ (2003) Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci Soc Am J 67:258–267. doi:10.2136/sssaj2003.2580

    Article  CAS  Google Scholar 

  45. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3: chemical methods 3 rd edn. Soil Science Society of America. Madison, WI. Book Series, No. 5, pp 961–1010

  46. Oliver M, Webster R, Gerrard J (1989) Geostatistics in physical geography. Part II: Applications. Transactions of the Institute of British Geographers, New Series, Vol. 14, No. 3, pp 270–286

  47. Peco B, Sánchez AM, Azcárate FM (2006) Abandonment in grazing systems: consequences for vegetation and soil. Agr Ecosyst Environ 113:284–294. doi:10.1016/j.agee.2005.09.017

    Article  Google Scholar 

  48. Pinto-Correia T (1993) Landscape monitoring and management in European rural areas: Danish and Portuguese case studies of landscape patterns and dynamics. Dissertation, University of Copenhagen

  49. Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: Global trends. Ecology 70:1346–1354

    Article  Google Scholar 

  50. Ripley BD (1977) Modelling spatial patterns (with discussion). J Roy Stat Soc 2:172–212

    Google Scholar 

  51. Rodeghiero M, Rubio A, Díaz-Pinés E, Romanyà J, Marañón S, Levy G, Sebastiá T, Fernández-Getino AP, Karyotis T, Chiti T, Sirca C, Martins A, Madeira M, Zhiyanski M, Gristina L (2011) Mediterranean ecosystems. In: Jandl R, Olssons M, Rodeghiero M (eds) Soil carbon in sensitive european ecosystems. John Wiley & Sons, West Sussex, UK

    Google Scholar 

  52. Rodríguez-Murillo JC (2001) Organic carbon content under different types of land use and soil in peninsular Spain. Biol Fer Soils 33:53–61. doi:10.1007/s003740000289

    Article  Google Scholar 

  53. Rovira P, Romanyà J, Rubio A, Roca N, Alloza JA, Vallejo R (2007) Estimación del carbono orgánico en los suelos peninsulares españoles. In: Bravo F (ed) El papel de los bosques en la mitigación del cambio climático. Fundación Gas Natural, Barcelona, pp 197–222

    Google Scholar 

  54. San Miguel A (2001) Pastos naturales españoles. Fundación Conde del Valle de Salazar, Ediciones Mundi-Prensa, E.T.S.I. Montes, Madrid

    Google Scholar 

  55. Schindlbacher A, de Gonzalo C, Díaz-Pinés E, Gorría P, Matthews B, Inclán R, Zechmeister-Boltenstern S, Rubio A, Jandl R (2010) Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. J Geophys Res 115(G03018):1–10. doi:10.1029/2009JG001191

    Google Scholar 

  56. Scholes RJ, Archer SR (1997) Tree–grass interactions in savannas. Annu Rev Ecol Syst 28:517–544. doi:10.1146/annurev.ecolsys.28.1.517

    Article  Google Scholar 

  57. Stein A, Corsten LCA (1991) Universal kriging and cokriging as a regression procedure. Biometrics 47:575–587. doi:10.2307/2532147

    Article  Google Scholar 

  58. Veblen KE (2012) Savanna glade hotspots: Plant community development and synergy with large hervibores. J Arid Environ 78:119–127. doi:10.1016/j.jaridenv.2011.10.016

    Article  Google Scholar 

  59. Wiegand T, Moloney KA (2004) Rings, circles and null-models for point pattern analysis in ecology. Oikos 10:209–229. doi:10.1111/j.0030-1299.2004.12497.x

    Article  Google Scholar 

  60. Young A (1997) Agroforestry for soil management. CAB International, Wallingford, pp 29 and 34–37

Download references

Acknowledgements

We thank Remedios Cubillo and Beatriz Ortiz for laboratory support and Emilien Simonot for his valuable previous work. We would like to thank the managers of El Dehesón, and particularly Celia López-Carrasco, for their practical support. The authors wish to express their appreciation to Ms Pru Brooke-Turner and Mr Adam Collins for their linguistic assistance. This study has been partially funded by the projects AGL2010-16862 and SUM2006-00034-C02 and the Ramón y Cajal Program from the Spanish Ministry of Education, and preliminary results have been presented in the frame of COST Action 639 (BurnOut).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuria Simón.

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simón, N., Montes, F., Díaz-Pinés, E. et al. Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain. Plant Soil 366, 537–549 (2013). https://doi.org/10.1007/s11104-012-1443-9

Download citation

Keywords

  • Agroforestry systems
  • Universal Kriging
  • Spatial variance partition
  • Soil C
  • Tree effect