Skip to main content

Advertisement

Log in

Grassland root demography responses to multiple climate change drivers depend on root morphology

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We examine how root system demography and morphology are affected by air warming and multiple, simultaneous climate change drivers.

Methods

Using minirhizotrons, we studied root growth, morphology, median longevity, risk of mortality and standing root pool in the upper soil horizon of a temperate grassland ecosystem for 3 years. Grassland monoliths were subjected to four climate treatments in a replicated additive design: control (C); elevated temperature (T); combined T and summer precipitation reduction (TD); combined TD and elevated atmospheric CO2 (TDCO2).

Results

Air warming (C vs T) and the combined climate change treatment (C vs TDCO2) had a positive effect on root growth rate and standing root pool. However, root responses to climate treatment varied depending on diameter size class. For fine roots (≤ 0.1 mm), new root length and mortality increased under warming but decreased in response to elevated CO2 (TD vs TDCO2); for coarse roots (> 0.2 mm), length and mortality increased under both elevated CO2 and combined climate change drivers.

Conclusions

Our data suggest that the standing roots pool in our grassland system may increase under future climatic conditions. Contrasted behaviour of fine and coarse roots may correspond to differential root activity of these extreme diameter classes in future climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison PD (1995) Survival analysis using SAS. A practical guide. SAS Institute Inc., Cary

    Google Scholar 

  • Anderson LJ, Derner JD, Polley HW, Gordon WS, Eissenstat DM, Jackson RB (2010) Root responses along a subambient to elevated CO2 gradient in a C3-C4 grassland. Glob Chang Biol 16:454–468

    Article  Google Scholar 

  • Arnone JA III, Zaller JG, Spehn EM, Niklaus PA, Wells CE, Korner C (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147:73–85

    Article  CAS  Google Scholar 

  • Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A (2006) Root respiration in temperate mountain grasslands differing in land use. Glob Chang Biol 12:995–1006

    Article  Google Scholar 

  • Bai W, Wan S, Niu S et al (2010) Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Chang Biol 16:1306–1316

    Article  Google Scholar 

  • Bloor JMG, Pichon P, Falcimagne R, Leadley P, Soussana JF (2010) Effects of warming, summer drought, and CO2 enrichment on aboveground biomass production, flowering phenology, and community structure in an upland grassland ecosystem. Ecosystems 13:888–900

    Article  CAS  Google Scholar 

  • Cantarel A, Bloor JMG, Soussana JF (2012) Four years of simulated climate change reduces aboveground productivity and alters functional diversity in grassland. J Veg Sci, in press

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Cox D (1972) Regression models and life tables. J Roy Stat Soc 34:187–220

    Google Scholar 

  • Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:563–574

    Article  Google Scholar 

  • De Boeck HJ, Lemmens CMHM, Gielen B et al (2007) Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Env Exp Bot 60:95–104

    Article  Google Scholar 

  • Dukes JS, Chiariello NR, Cleland EE et al (2005) Responses of grassland production to single and multiple global environmental changes. Plos Biol 3:1829–1837

    Article  CAS  Google Scholar 

  • Edwards EJ, Benham DG, Marland LA, Fitter AH (2004) Root production is determined by radiation flux in a temperate grassland community. Glob Chang Biol 10:209–227

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: Implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Farrar JF, Williams ML (1991) The Effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Environ 14:819–830

    Article  CAS  Google Scholar 

  • Fitter AH (1987) An architectural approach to the comparative ecology of plant-root systems. New Phytol 106:61–77

    Article  Google Scholar 

  • Fitter AH, Self GK, Wolfenden J, Vanvuuren MMI, Brown TK, Williamson L, Graves JD, Robinson D (1996) Root production and mortality under elevated atmospheric carbon dioxide. Plant Soil 187:299–306

    Article  CAS  Google Scholar 

  • Fitter AH, Graves JD, Wolfenden J, Self GK, Brown TK, Bogie D, Mansfield TA (1997) Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytol 137:247–255

    Article  Google Scholar 

  • Fitter AH, Graves JD, Self GK, Brown TK, Bogie DS, Taylor K (1998) Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia 114:20–30

    Article  Google Scholar 

  • Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P (1999) Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120:575–581

    Article  Google Scholar 

  • Forbes PJ, Black KE, Hooker JE (1997) Temperature-induced alteration to root longevity in Lolium perenne. Plant Soil 190:87–90

    Article  CAS  Google Scholar 

  • Garcia-Pausas J, Casals P, Romanyà J, Vallecillo S, Sebastià M-T (2011) Seasonal patterns of belowground biomass and productivity in mountain grasslands in the Pyrenees. Plant Soil 340:315–326

    Article  CAS  Google Scholar 

  • Gill AR, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Gill RA, Burke IC, Lauenroth WK, Milchunas DG (2002) Longevity and turnover of roots in the shortgrass steppe: Influence of diameter and depth. Plant Ecol 159:241–251

    Article  Google Scholar 

  • Higgins PAT, Jackson RB, Des Rosiers JM, Field CB (2002) Root production and demography in a California annual grassland under elevated atmospheric carbon dioxide. Glob Chang Biol 8:841–850

    Article  Google Scholar 

  • Hovenden MJ, Newton PCD, Carran RA et al (2008) Warming prevents the elevated CO2-induced reduction in available soil nitrogen in a temperate, perennial grassland. Glob Chang Biol 14:1018–1024

    Article  Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin FS III, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–578

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson RB, Caldwell MM (1996) Integrating resource heterogeneity and plant plasticity: modelling nitrate and phosphate uptake in a patchy soil environment. J Ecol 84:891–903

    Article  Google Scholar 

  • Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289

    Article  PubMed  Google Scholar 

  • Kandeler E, Tscherko D, Bardgett RD, Hobbs PJ, Kampichler C, Jones TH (1998) The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant Soil 202:251–262

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) REVIEW: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16:3386–3406

    Article  Google Scholar 

  • LeCain D, Morgan J, Milchunas D, Mosier A, Nelson J, Smith D (2006) Root biomass of individual species, and root size characteristics after 5 years of CO2 enrichment on native shortgrass steppe. Plant Soil 279:219c228

    Article  CAS  Google Scholar 

  • Louault F, Pillar VD, Aufrere J, Garnier E, Soussana JF (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16:151–160

    Google Scholar 

  • Luo Y (2007) Terrestrial carbon cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712

    Article  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, Mcnurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–739

    Article  Google Scholar 

  • Luo Y, Gerten D, Le Maire G et al (2008) Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob Chang Biol 14:1986–1999

    Article  Google Scholar 

  • Matthew C, Xia JX, Chu ACP, Mackay AD, Hodgson J (1991) Relationship between root production and tiller appearance rates in perennial ryegrass (Lolium perenne L.). In: Atkinson D (ed) Plant root growth—an ecological perspective. Blackwell Science Publications, Oxford, pp 281–290

    Google Scholar 

  • Miglietta F, Peressotti A, Vaccari FP, Zaldei A, deAngelis P, Scarascia-Mugnozza G (2001) Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476

    Article  Google Scholar 

  • Milchunas D (2009) Estimating root production: comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems 12:1381–1402

    Article  CAS  Google Scholar 

  • Milchunas DG, Morgan JA, Mosier AR, LeCain DR (2005a) Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Glob Chang Biol 11:1837–1855

    Article  Google Scholar 

  • Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA (2005b) Root production and tissue quality in a shortgrass steppe exposed to elevated CO2: Using a new ingrowth method. Plant Soil 268:111–122

    Article  CAS  Google Scholar 

  • Niklaus PA, Spinnler D, Körner C (1998) Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia 117:201–208

    Article  Google Scholar 

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293

    Article  Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ et al (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Article  Google Scholar 

  • Pendall E, Osanai YUI, Williams AL, Hovenden MJ (2011) Soil carbon storage under simulated climate change is mediated by plant functional type. Glob Chang Biol 17:505–514

    Article  Google Scholar 

  • Picon-Cochard C, Pilon R, Tarroux E, Pagès L, Robertson J, Dawson L (2012) Effects of species, root branching order and season on the root traits of 13 perennial grass species. Plant Soil 353:47–57

    Article  CAS  Google Scholar 

  • Pierret A, Doussan C, Capowiez Y, Bastardie F, Pages L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281

    Article  Google Scholar 

  • Pontes LS, Carrere P, Andueza D, Louault F, Soussana JF (2007) Seasonal productivity and nutritive value of temperate grasses found in semi-natural pastures in Europe: responses to cutting frequency and n supply. Grass For Sci 6:485–496

    Article  Google Scholar 

  • Pregitzer KS, King JA, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147:105–115

    Article  CAS  Google Scholar 

  • Ryser P (1998) Intra- and interspecific variation in root length, root turnover and the underlying parameters. In: Poorter H, Van Vuuren MMI, Lambers H (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, pp 441–465

    Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  PubMed  CAS  Google Scholar 

  • Sindhøj E, Andren O, Katterer T, Marissink M, Pettersson R (2004) Root biomass dynamics in a semi-natural grassland exposed to elevated atmospheric CO2 for 5 years. Acta Agri Scandin Sect B-Soil Plant Sci 54:50–59

    Google Scholar 

  • Soussana JF, Casella E, Loiseau P (1996) Long-term effects of CO2 enrichment and temperature increase on a temperate grass sward. 2. Plant nitrogen budgets and root fraction. Plant Soil 182:101–114

    Article  CAS  Google Scholar 

  • Steinaker DF, Wilson SD (2005) Belowground litter contributions to nitrogen cycling at a northern grassland-forest boudary. Ecology 86:2825–2833

    Article  Google Scholar 

  • Steinaker DF, Wilson SD (2008) Phenology of fine roots and leaves in forest and grassland. J Ecol 96:1222–1229

    Article  Google Scholar 

  • Waisel Y, Eishel A (2002) Functional diversity of various constituents of a single root system. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 157–174

    Google Scholar 

  • Wan S, Norby RJ, Ledford J, Weltzin JF (2007) Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob Chang Biol 13:2411–2424

    Article  Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82:882–892

    Article  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2-implications for water-limited environments. Plant Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

  • Zhou X, Weng E, Luo Y (2008) Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2 and precipitation changes. Ecol Appl 18:453–466

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Patrick Pichon, Nicolas Deltroy, Amélie Cantarel for their help with data collection and site management during the study period. Katja Klumpp is acknowledged for improving a previous version of the paper. This study received financial support via a doctoral fellowship from the Region Auvergne and the INRA (EFPA Department) awarded to RP, a CNRS postdoctoral fellowship awarded to JMGB, an IFB-GICC project grant, an ANR [French national research agency] project grant, and the EC FP6 ‘NitroEurope-IP’ project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Picon-Cochard.

Additional information

Responsible Editor: Angela Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilon, R., Picon-Cochard, C., Bloor, J.M.G. et al. Grassland root demography responses to multiple climate change drivers depend on root morphology. Plant Soil 364, 395–408 (2013). https://doi.org/10.1007/s11104-012-1371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1371-8

Keywords

Navigation