Plant and Soil

, Volume 364, Issue 1–2, pp 287–301 | Cite as

Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa

  • Katerina Machacova
  • Hans Papen
  • Jürgen Kreuzwieser
  • Heinz Rennenberg
Regular Article

Abstract

Background and aims

Nitrous oxide (N2O) and methane (CH4) can be emitted from surfaces of riparian plants. Data on the emission of these greenhouse gases by upland trees are scarce. We quantified CH4 and N2O emissions from stems of Fagus sylvatica, an upland tree, and Alnus glutinosa, a riparian tree.

Methods

The gas fluxes were investigated in mesocosms under non-flooded control conditions and during a flooding period using static chamber systems and gas chromatographic analyses.

Results

Despite differences in the presence of an aerenchyma system, both tree species emitted N2O and CH4 from the stems. Flooding caused a dramatic transient increase of N2O stem emissions by factors of 740 (A. glutinosa) and even 14,230 (F. sylvatica). Stem emissions of CH4 were low and even deposition was determined (F. sylvatica controls). The results suggest that CH4 was transported mainly through the aerenchyma, whereas N2O transport occurred in the xylem sap.

Conclusions

For the first time it has been demonstrated that upland trees such as F. sylvatica clearly significantly emit N2O from their stems despite lacking an aerenchyma. If this result is confirmed in adult trees, upland forests may constitute a new and significant source of atmospheric N2O.

Keywords

Methane Nitrous oxide Soil and stem emission Alnus glutinosa Fagus sylvatica Flooding 

Supplementary material

11104_2012_1359_Fig5_ESM.jpg (144 kb)
Online Resource 1

Construction of a mesocosm for experiments with Alnus glutinosa and Fagus sylvatica (JPEG 143 kb)

11104_2012_1359_MOESM1_ESM.tif (9.9 mb)
High Resolution Image(TIFF 10168 kb)
11104_2012_1359_Fig6_ESM.jpg (57 kb)
Online Resource 2

Construction of a stem chamber for the determination of nitrous oxide and methane emission rates from stems of Alnus glutinosa and Fagus sylvatica (JPEG 57 kb)

11104_2012_1359_MOESM2_ESM.tif (6.2 mb)
High Resolution Image(TIFF 6364 kb)

References

  1. Anderson B, Bartlett K, Frolking S, Hayhoe K, Jenkins J, Salas W (2010) Methane and nitrous oxide emissions from natural sources. United States Environmental Protection Agency, Office of Atmospheric Programs, WashingtonGoogle Scholar
  2. Aulakh MS, Wassmann R, Rennenberg H (2000) Methane emissions from rice fields - quantification, mechanisms, role of management, and mitigation options. Adv Agron 70:193–260CrossRefGoogle Scholar
  3. Azam F, Müller C, Weiske A, Benckiser G, Ottow JCG (2002) Nitrification and denitrification as sources of atmospheric nitrous oxide – role of oxidizable carbon and applied nitrogen. Biol Fertil Soils 35:54–61CrossRefGoogle Scholar
  4. Bohn TJ, Lettenmaier DP, Sathulur K, Bowling LC, Podest E, McDonald KC, Friborg T (2007) Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change. Environ Res Lett 2:1–9CrossRefGoogle Scholar
  5. Bosse U, Frenzel P (1997) Activity and distribution of methane-oxidizing bacteria in flooded rice soil mesocosms and in rice plants (Oryza sativa). Appl Environ Microbiol 63:1199–1207PubMedGoogle Scholar
  6. Bremner JM, Blackmer AM (1978) Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen. Science 199:295–296PubMedCrossRefGoogle Scholar
  7. Brüggemann N, Meier R, Steigner D, Zimmer I, Louis S, Schnitzler JP (2009) Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol 182:912–918PubMedCrossRefGoogle Scholar
  8. Buchel HB, Grosse W (1990) Localization of the porous partition responsible for pressurized gas transport in Alnus glutinosa (L.) Gaertn. Tree Physiol 6:247–256PubMedCrossRefGoogle Scholar
  9. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183CrossRefGoogle Scholar
  10. Butterbach-Bahl K, Papen H, Rennenberg H (2000) Scanning electron microscopy analysis of the aerenchyma in two rice cultivars. Phyton Ann Rei Bot 40:43–55Google Scholar
  11. Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 196:7–14CrossRefGoogle Scholar
  12. Chang C, Janzen HH, Cho CM, Nakonechny EM (1998) Nitrous oxide emission through plants. Soil Sci Soc Am J 62:35–38CrossRefGoogle Scholar
  13. Chen X, Boeckx P, Shen S, Van Cleemput O (1999) Emission of N2O from rye grass (Lolium perenne L.). Biol Fertil Soils 28:393–396CrossRefGoogle Scholar
  14. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (ed) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 872–879Google Scholar
  15. Claessens H, Oosterbaan A, Savill P, Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83:163–175CrossRefGoogle Scholar
  16. Denier van der Gon HAC, Neue HU (1996) Oxidation of methane in the rhizosphere of rice plants. Biol Fertil Soils 22:359–366CrossRefGoogle Scholar
  17. Dick J, Skiba U, Munro R, Deans D (2006) Effect of N-fixing and non N-fixing trees and crops on NO and N2O emissions from Senegalese soils. J Biogeogr 33:416–423CrossRefGoogle Scholar
  18. Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM et al (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175:29–35PubMedCrossRefGoogle Scholar
  19. FAO (Food and Agriculture Organization of the United Nations) (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication, 2nd edn. World Soil Resources Reports 103, RomeGoogle Scholar
  20. Ferner E, Rennenberg H, Kreuzwieser J (2012) Effect of fl ooding on C metabolism of fl ood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. Tree Physiol 32:135–145PubMedCrossRefGoogle Scholar
  21. Forsteinrichtung Stadtwald Freiburg (2011) Städtisches Forstamt Freiburg im BreisgauGoogle Scholar
  22. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 137–153Google Scholar
  23. Frenzel P, Rudolph J (1998) Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorum. Plant Soil 202:27–32CrossRefGoogle Scholar
  24. García LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663CrossRefGoogle Scholar
  25. Gauci V, Gowing DJG, Hornibrook ERC, Davis JM, Dise NB (2010) Woody stem methane emission in mature wetland alder trees. Atmos Environ 44:2157–2160CrossRefGoogle Scholar
  26. Einrichtungswerk Landkreis Rastatt - Gemeindewald Steinmauern (2009) Landratsamt Rastatt and Regierungspräsidium Freiburg, Abteilung 8, ForstdirektionGoogle Scholar
  27. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11CrossRefGoogle Scholar
  28. Gilbert B, Frenzel P (1995) Methanotrophic bacteria in the rhizosphere of rice mesocosms and their effect on porewater methane concentration and methane emission. Biol Fertil Soils 20:93–100CrossRefGoogle Scholar
  29. Hefting MM, Bobbink R, de Caluwe H (2003) Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. J Environ Qual 32:1194–1203PubMedCrossRefGoogle Scholar
  30. Hoffmann G, Thun R, Herrmann R, Knickmann E (1991) Methodenbuch Band 1, Die Untersuchung von Böden, 4th edn. VDLUFA-Verlag, DarmstadtGoogle Scholar
  31. Keppler F, Hamilton JTG, Brass M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191PubMedCrossRefGoogle Scholar
  32. Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß M, Röckmann T (2008) Methoxyl groups of plant pectin as a precursor compound for atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–814PubMedCrossRefGoogle Scholar
  33. Kreuzwieser J, Fürniss S, Rennenberg H (2002) Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant Cell Environ 25:1039–1049CrossRefGoogle Scholar
  34. Kreuzwieser J, Buchholz J, Rennenberg H (2003) Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biology 5:423–431CrossRefGoogle Scholar
  35. Kreuzwieser J, Papadopoulou E, Rennenberg H (2004) Interaction of flooding with carbon metabolism of forest trees. Plant Biology 6:299–306PubMedCrossRefGoogle Scholar
  36. Kroeze C, Mosier A, Bouwman L (1999) Closing the global N2O budget: a retrospective analysis 1500–1994. Glob Biogeochem Cycles 13:1–8CrossRefGoogle Scholar
  37. Lelieveld J, Crutzen P, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B:128–150Google Scholar
  38. Li C (2007) Quantifying greenhouse gas emissions from soils: scientific basis and modeling approach. Soil Sci Plant Nutr 53:344–352CrossRefGoogle Scholar
  39. Mander U, Lohmus K, Teiter S, Uri V, Augustin J (2008) Gaseous nitrogen and carbon fluxes in riparian alder stands. Boreal Env Res 13:231–241Google Scholar
  40. Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles 1:61–86CrossRefGoogle Scholar
  41. McBain MC, Warland JS, McBride RA, Wagner-Riddle C (2004) Laboratory-scale measurements of N2O and CH4 emissions from hybrid poplars (Populus deltoids x Populus nigra). Waste Manag Res 22:454–465PubMedCrossRefGoogle Scholar
  42. McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yun BW (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180:124–132PubMedCrossRefGoogle Scholar
  43. Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR et al (2009) Emission of methane from plants. Proc Roy Soc B Biol Sci 276:1347–1354CrossRefGoogle Scholar
  44. Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66PubMedCrossRefGoogle Scholar
  45. Pihlatie M, Ambus P, Rinne J, Pilegaard K, Vesala T (2005) Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytol 168:93–98PubMedCrossRefGoogle Scholar
  46. Pinay G, Roques L, Fabre A (1993) Spatial and temporal patterns of denitrification in a riparian forest. J Appl Ecol 30:581–591CrossRefGoogle Scholar
  47. Prendergast-Miller MT, Baggs EM, Johnson D (2011) Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillosa. FEMS Microbiol Lett 316:31–35PubMedCrossRefGoogle Scholar
  48. Pritsch K, Munch JC, Buscot F (1997) Morphological and anatomical characterisation of black alder Alnus glutinosa (L.) Gaertn. ectomycorrhizas. Mycorrhiza 7:201–216CrossRefGoogle Scholar
  49. Purvaja R, Ramesh R, Frenzel P (2004) Plant-mediated methane emission from an Indian mangrove. Glob Change Biol 10:1825–1834CrossRefGoogle Scholar
  50. Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Sinninghe Damste JS, Lamers LPM et al (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156PubMedCrossRefGoogle Scholar
  51. Rice AL, Butenhoff CL, Shearer MJ, Teama D, Rosenstiel TN, Khalil MAK (2010) Emissions of anaerobically produced methane by trees. Geophys Res Lett 37:1–5CrossRefGoogle Scholar
  52. Rudaz AO, Davidson EA, Firestone MK (1991) Sources of nitrous oxide production following wetting of dry soil. FEMS Microbiol Ecol 85:117–124Google Scholar
  53. Rusch H, Rennenberg H (1998) Black alder (Alnus Glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201:1–7CrossRefGoogle Scholar
  54. Schmull M, Thomas FM (2000) Morphological and physiological reactions of young deciduous trees (Quercus robur L., Q. petraea [Matt.] Liebl., Fagus sylvatica L.) to waterlogging. Plant Soil 225:227–242CrossRefGoogle Scholar
  55. Silver WL, Herman DJ, Firestone MK (2001) Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 82:2410–2416CrossRefGoogle Scholar
  56. Smart DR, Bloom AJ (2001) Wheat leaves emit nitrous oxide during nitrate assimilation. Proc Natl Acad Sci USA 98:7875–7878PubMedCrossRefGoogle Scholar
  57. Smith KA (1990) Greenhouse gas fluxes between land surfaces and the atmosphere. Prog Phys Geogr 14:349–372CrossRefGoogle Scholar
  58. Smith CJ, Patrick WH Jr (1983) Nitrous oxide emission as affected by alternate anaerobic and aerobic conditions from soil suspensions enriched with ammonium sulfate. Soil Biol Biochem 15:693–697CrossRefGoogle Scholar
  59. Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791CrossRefGoogle Scholar
  60. Sorz J, Hietz P (2006) Gas diffusion through wood: implications for oxygen supply. Trees 20:34–41CrossRefGoogle Scholar
  61. Sponagel H, Grottenthaler W, Hartmann KJ, Hartwich R, Janetzko P, Joisten H, Kühn D, Sabel KJ, Traidl R (2005) 5.6.13.4.1. Feinboden. In: Sponagel H, Grottenthaler W, Hartmann KJ, Hartwich R, Janetzko P, Joisten H, Kühn D, Sabel KJ, Traidl R (eds) Bodenkundliche Kartieranleitung. Ad-hoc-Arbeitsgruppe Boden der Staatlichen Geologischen Dienste und der Bundesanstalt für Geowissenschaften und Rohstoffe, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 141–148Google Scholar
  62. Struwe S, Kjoller A (1989) Field determination of denitrification in water-logged forest soils. FEMS Microbiol Ecol 62:71–78CrossRefGoogle Scholar
  63. Templer PH, Silver WL, Pett-Ridge J, DeAngelis KM, Firestone MK (2008) Plant and microbial controls on nitrogen retention and loss in a humid tropical forest. Ecology 89:3030–3040CrossRefGoogle Scholar
  64. Terazawa K, Ishizuka S, Sakata T, Yamada K, Takahashi M (2007) Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol Biochem 39:2689–2692CrossRefGoogle Scholar
  65. Toda H, Yagi K, Yoh M, Takeuchi M (1994) Measurement of methane and nitrous oxide emissions from the peatlands in Northern Quèbec, Canada. Proc NIPR Symp Polar Biol 7:237–242Google Scholar
  66. Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:937–947CrossRefGoogle Scholar
  67. Wang ZP, Han XG, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the Inner Mongolia steppe. Environ Sci Technol 42:62–68PubMedCrossRefGoogle Scholar
  68. Wassmann R, Aulakh MS (2000) The role of rice plants in regulating mechanisms of methane emissions. Biol Fertil Soils 31:20–29CrossRefGoogle Scholar
  69. Yan X, Shi S, Du L, Xing G (2000) Pathways of N2O emission from rice paddy soil. Soil Biol Biochem 32:437–440CrossRefGoogle Scholar
  70. Yu KW, Wang ZP, Chen GX (1997) Nitrous oxide and methane transport through rice plants. Biol Fertil Soils 24:341–343CrossRefGoogle Scholar
  71. Zeikus JG, Ward JC (1974) Methane formation in living trees: a microbial origin. Science 184:1181–1183PubMedCrossRefGoogle Scholar
  72. Zhang L, Boeckx P, Chen G, Van Cleemput O (2000) Nitrous oxide emission from herbicide-treated soybean. Biol Fertil Soils 32:173–176CrossRefGoogle Scholar
  73. Zvára K (1998) 7 Nĕkolik výběrů. In: Zvára K (ed) Biostatistika. Karolinum, Praha, pp 115–145Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Katerina Machacova
    • 1
  • Hans Papen
    • 2
  • Jürgen Kreuzwieser
    • 1
  • Heinz Rennenberg
    • 1
    • 3
  1. 1.Tree Physiology, Institute of Forest Botany and Tree PhysiologyUniversity of FreiburgFreiburgGermany
  2. 2.Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany
  3. 3.Kind Saud UniversityRiyadhSaudi Arabia

Personalised recommendations