Plant and Soil

, Volume 361, Issue 1–2, pp 177–187 | Cite as

Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition

  • Umit Baris Kutman
  • Bahar Yildiz Kutman
  • Yasemin Ceylan
  • Emir Ali Ova
  • Ismail Cakmak
Regular Article

Abstract

Background and aims

Whether root Zn uptake during grain filling or remobilization from pre-anthesis Zn stores contributes more to grain Zn in wheat is subject to an on-going debate. This study investigated the effects of N nutrition and post-anthesis Zn availability on the relative importance of these sources.

Methods

Durum wheat plants were grown in nutrient solution containing adequate Zn (0.5 μM) and three different N levels (0.5; 1.5; 4.5 mM). One third of the plants were harvested when they reached anthesis. One half of the remaining plants were grown to maturity with adequate Zn, whereas the Zn supply to the other half was discontinued at anthesis. Roots, straw and grains were harvested separately and analyzed for Zn and N.

Results

Depending on the N supply, Zn remobilization from pre-anthesis sources provided almost all of grain Zn when the Zn supply was withheld at anthesis; otherwise up to 100 % of grain Zn could be accounted for by Zn taken up post-anthesis. By promoting tillering and grain yield and extending the grain filling, higher N supply favored the contribution of Zn uptake to grain Zn accumulation.

Conclusion

Remobilization is critical for grain Zn accumulation when Zn availability is restricted during grain filling. However, where root uptake can continue, concurrent Zn uptake during grain development, favored by higher N supply, overshadows net remobilization.

Keywords

Nitrogen Post-anthesis Remobilization Uptake Wheat Zinc 

References

  1. Alloway BJ (2004) Zinc in soils and crop nutrition. International Zinc Association Publications, BrusselsGoogle Scholar
  2. Bouis HE (2003) Micronutrient fortification of plants through plant breeding: Can it improve nutrition in man at low cost? P Nutr Soc 62:403–411. doi:10.1079/PNS2003262 CrossRefGoogle Scholar
  3. Cakmak I (2008) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302:1–17. doi:10.1007/s11104-007-9466-3 CrossRefGoogle Scholar
  4. Cakmak I, Engels C (1999) Role of mineral nutrients in photosynthesis and yield formation. In: Rengel Z (ed) Crop Nutrition. The Haworth Press, New York, pp 141–168Google Scholar
  5. Cakmak I, Pfeiffer WH, McClafferty B (2010a) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20. doi:10.1094/CCHEM-87-1-0010 CrossRefGoogle Scholar
  6. Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010b) Biofortification and Localization of Zinc in Wheat Grain. J Agric Food Chem 58:9092–9102CrossRefGoogle Scholar
  7. Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129(3):635–643. doi:10.1111/j.1399-3054.2006.00841.x CrossRefGoogle Scholar
  8. Elias EM, Manthey FA (2005) End products: Present and future uses. In: DiFonzo N, Araus JL, Pfeiffer WH, Slafer GA, Royo C, Nachit MM (eds) Durum Wheat Breeding Current Approaches and Future Strategies. Food Products Press, New York, pp 63–86Google Scholar
  9. Erenoglu B, Nikolic M, Romheld V, Cakmak I (2002) Uptake and transport of foliar applied zinc (65Zn) in bread and durum wheat cultivars differing in zinc efficiency. Plant Soil 241:251–257. doi:10.1023/A:1016148925918 CrossRefGoogle Scholar
  10. Erenoglu B, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189:438–448. doi:10.1111/j.1469-8137.2010.03488.x PubMedCrossRefGoogle Scholar
  11. Ewert F, Honermeier B (1999) Spikelet initiation of winter triticale and winter wheat in response to nitrogen fertilization. Eur J Agric 11(2):107–113. doi:10.1016/S1161-0301(99)00023-4 CrossRefGoogle Scholar
  12. Feil B, Fossati D (1995) Mineral composition of triticale grains as related to grain yield and grain protein. Crop Sci 35:1426–1431CrossRefGoogle Scholar
  13. Garnett TP, Graham RD (2005) Distribution and remobilization of iron and copper in wheat. Ann Bot 95(5):817–826. doi:10.1093/aob/mci085 PubMedCrossRefGoogle Scholar
  14. Gibson RS, Hess SY, Hotz C, Brown KH (2008) Indicators of zinc status at the population level: a review of the evidence. Br J Nutr 99(3):14–23. doi:10.1017/S0007114508006818 CrossRefGoogle Scholar
  15. Graham RD, Rengel Z (1993) Genotypic variation in Zn uptake and utilization by plants. In: Robson D (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 107–114CrossRefGoogle Scholar
  16. Hajiboland R, Singh B, Romheld V (2001) Retranslocation of Zn from leaves as important factor for zinc efficiency of rice genotypes. In: Horst WJ, Schenk MK, Burkert A, Claasen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Romheld V, Sattelmacher B, Schmidhalter U, Schubert S, von Wiren N, Wittenmayer L (eds) Plant Nutrition—Food Security and Sustainability of Agro-Ecosystems. Kluwer, Dordrect, pp 226–227Google Scholar
  17. Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204Google Scholar
  18. Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87(1):1–9. doi:10.1094/CCHEM-87-1-0001 CrossRefGoogle Scholar
  19. Kutman UB, Yildiz B, Cakmak I (2011) Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 342:149–164. doi:10.1007/s11104-010-0679-5 CrossRefGoogle Scholar
  20. Longnecker NE, Robson AD (1993) Distribution and transport of zinc in plants. In: Robson AD (ed) Zinc in soil and plants. Kluwer Academic Publishers, Dordrect, pp 79–92CrossRefGoogle Scholar
  21. Lott JNA, Greenwood JS, Batten GD (1995) Mechanisms and regulation of mineral nutrient storage during seed development. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 215–235Google Scholar
  22. Marschner H (1993) Zinc uptake from soils. In: Robson AD (ed) Zinc in Soils and Plants. Kluwer Academic Publishers, Dordrecht, pp 59–77CrossRefGoogle Scholar
  23. Marschner H (1995) Mineral Nutrition of Higher Plants, 2nd edn. Academic, LondonGoogle Scholar
  24. Marschner P (2011) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Academic, LondonGoogle Scholar
  25. Morgounov A, Gomes-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat in Central Asia. Euphytica 155(1–2):193–203. doi:10.1007/s10681-006-9321-2 CrossRefGoogle Scholar
  26. Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun H-J, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128(1):144–152. doi:10.1111/j.1399-3054.2006.00737.x CrossRefGoogle Scholar
  27. Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjorring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473. doi:10.1016/j.tplants.2008.06.005 PubMedCrossRefGoogle Scholar
  28. Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306(1–2):57–67. doi:10.1007/s11104-007-9417-z CrossRefGoogle Scholar
  29. Persson DP, Hansen TH, Laursen KH, Schjoerring JK, Husted S (2009) Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP- ICP-MS. Metallomics 1(5):418–426. doi:10.1039/b905688b PubMedCrossRefGoogle Scholar
  30. Pfeiffer WH, McClafferty B (2007) Biofortification: Breeding micronutrient-dense crops. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell Science, New York, pp 61–91CrossRefGoogle Scholar
  31. Salvagiotti F, Miralles DJ (2007) Wheat development as affected by nitrogen and sulfur nutrition. Aust J Agr Res 58(1):39–45. doi:10.1071/AR06090 CrossRefGoogle Scholar
  32. Sharma PN, Chatterjee C, Agarwala SC, Sharma CP (1990) Zinc deficiency and pollen fertility in maize (Zea mays). Plant Soil 124(2):221–225. doi:10.1007/BF00009263 CrossRefGoogle Scholar
  33. Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Romheld V, Zou C (2010) Influence of long term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci 51(1):165–170. doi:10.1016/j.jcs.2009.11.008 CrossRefGoogle Scholar
  34. Stomph TJ, Jiang W, Struik PC (2009) Zinc biofortification of cereals: rice differs from wheat and barley. Trends Plant Sci 14:123–124. doi:10.1016/j.tplants.2009.01.001 CrossRefGoogle Scholar
  35. Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57(11):2785–2794. doi:10.1093/jxb/erl047 PubMedCrossRefGoogle Scholar
  36. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301. doi:10.1126/science.1133649 PubMedCrossRefGoogle Scholar
  37. Waters BM, Grusak MA (2008) Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol 177(2):389–405. doi:10.1111/j.1469-8137.2007.02288.x PubMedGoogle Scholar
  38. Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60(15):4263–4274. doi:10.1093/jxb/erp257 PubMedCrossRefGoogle Scholar
  39. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364. doi:10.1093/jxb/erh064 PubMedCrossRefGoogle Scholar
  40. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84. doi:10.1111/j.1469-8137.2008.02738.x PubMedCrossRefGoogle Scholar
  41. Wu CY, Lu LL, Yang XE, Feng Y, Wei Y, Hao HL, Stoffella PJ, He ZL (2010) Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem 58:6767–6773. doi:10.1021/jf100017e PubMedCrossRefGoogle Scholar
  42. Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169(2):223–236. doi:10.1111/j.1469-8137.2005.01597.x PubMedCrossRefGoogle Scholar
  43. Zebarth BJ, Warren CJ, Sheard RW (1992) Influence of the rate of nitrogen fertilization on the mineral content of winter wheat in Ontario. J Agric Food Chem 40(9):1528–1530. doi:10.1021/jf00021a011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Umit Baris Kutman
    • 1
  • Bahar Yildiz Kutman
    • 1
  • Yasemin Ceylan
    • 1
  • Emir Ali Ova
    • 1
  • Ismail Cakmak
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations