Plant and Soil

, Volume 358, Issue 1–2, pp 51–60

The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes

  • Ted C. J. Turlings
  • Ivan Hiltpold
  • Sergio Rasmann
Marschner Review

Abstract

Background

Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief.

Scope

This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO2 and two typical inducible root volatiles.

Conclusions

The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.

Keywords

Entomopathogenic nematodes Foraging behavior Root volatiles Carbon dioxide Belowground tritrophic interactions 

References

  1. Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36(4):361–368PubMedCrossRefGoogle Scholar
  2. Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99(1):26–35CrossRefGoogle Scholar
  3. Baermann G (1917) Eine enifache Methode Zur Auffindung von Anklyostomum (Nematoden) larven in Erdproben. GeneeskTijdschrNed-Indie 57:131–137Google Scholar
  4. Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256(1):67–83CrossRefGoogle Scholar
  5. Boff MIC, Zoon FC, Smits PH (2001) Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomologia Experimentalis et Applicata 98(3):329–337CrossRefGoogle Scholar
  6. Campbell JF, Lewis EE (2002) Entomopathogenic nematode host- search strategies. In: Lewis EE, Campbell JF, Sukhdeo MVK (eds) The behavioural ecology of parasites. CABI Publishing, Wallingford, pp 13–38CrossRefGoogle Scholar
  7. Crocoll C, Asbach J, Novak J, Gershenzon J, Degenhardt J (2010) Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol Biol 73:587–603PubMedCrossRefGoogle Scholar
  8. Cutler GC, Webster JM (2003) Host-finding ability of three entomopathogenic nematode isolates in the presence of plant roots. Nematology 5:601–608CrossRefGoogle Scholar
  9. D’Alessandro M, Turlings TCJ (2005) In Situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses 30:739–753PubMedCrossRefGoogle Scholar
  10. D’Alessandro M, Held M, Triponez Y, Turlings TCJ (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J Chem Ecol 32(12):2733–2748PubMedCrossRefGoogle Scholar
  11. Degen T, Dillmann C, Marion-Poll F, Turlings TCJ (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135(4):1928–1938PubMedCrossRefGoogle Scholar
  12. Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14(2):169–176PubMedCrossRefGoogle Scholar
  13. Degenhardt J, Hiltpold I, Köllner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci U S A 106(32):13213–13218PubMedCrossRefGoogle Scholar
  14. Dekker T, Geier M, Carde RT (2005) Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J Exp Biol 208(15):2963–2972PubMedCrossRefGoogle Scholar
  15. Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Sternberg PW (2012) An entomopathogenic nematode by any other name. Plos Pathog 8(3):e1002527. doi:10.1371/journal.ppat.1002527 PubMedCrossRefGoogle Scholar
  16. Ferry A, Dugravot S, Delattre T, Christides JP, Auger J, Bagneres AG, Poinsot D, Cortesero AM (2007) Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J Chem Ecol 33(11):2064–2077PubMedCrossRefGoogle Scholar
  17. Fontana A, Held M, Fantaye CA, Turlings TCJ, Degenhardt J, Gershenzon J (2011) Attractiveness of constitutive and herbivore-induced sesquiterpene blends of maize to the parasitic wasp Cotesia marginiventris (Cresson). J Chem Ecol 37(6):582–591PubMedCrossRefGoogle Scholar
  18. Gaugler R (2002) Entomopathogenic nematology. CABI Publishing, WallingfordCrossRefGoogle Scholar
  19. Gaugler R, Campbell JF (1991) Selection for enhanced host-finding of scarab larvae (Coleoptera, Scarabaeidae) in an entomopathogenic nematode. Environ Entomol 20(2):700–706Google Scholar
  20. Gaugler R, Lebeck L, Nakagaki B, Boush GM (1980) Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon-dioxide. Environ Entomol 9(5):649–652Google Scholar
  21. Gaugler R, Campbell JF, McGuire TR (1989) Selection for host-finding in Steinernema feltiae. J Invertebr Pathol 54(3):363–372CrossRefGoogle Scholar
  22. Grewal PS, Ehlers RU, Shapiro DI (2005) Nematodes as biocontrol agents. CABI Publishing, WallingfordCrossRefGoogle Scholar
  23. Griffin CT, Downes MJ (1994) Selection of Heterorhabditis sp. for improved infectivity at low temperatures. In: Burnell AM, Ehlers RU, Masson JP (eds) Genetics of entomopathogenic nematode-bacterium complexes. European Commission Publication EUR 15681 EN, Luxembourg, pp 120–128Google Scholar
  24. Hallem EA, Dillman AR, Hong AV, Zhang YJ, Yano JM, DeMarco SF, Sternberg PW (2011) A sensory code for host seeking in parasitic nematodes. Curr Biol 21(5):377–383PubMedCrossRefGoogle Scholar
  25. Hass B, Griffin CT, Downes MJ (1999) Persistence of Heterorhabditis infective juveniles in soil: comparison of extraction and infectivity measurements. J Nematol 31(4):508–516PubMedGoogle Scholar
  26. Hiltpold I, Turlings TCJ (2008) Belowground chemical signalling in maize: when simplicity rhymes with efficiency. J Chem Ecol 34(5):628–635PubMedCrossRefGoogle Scholar
  27. Hiltpold I, Turlings TCJ (2012) Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pest and to improve crop yield. J Chem Ecol. doi:10.1007/s10886-012-0131-9
  28. Hiltpold I, Baroni M, Toepfer S, Kuhlmann U, Turlings TCJ (2010a) Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J Exp Biol 213(14):2417–2423PubMedCrossRefGoogle Scholar
  29. Hiltpold I, Baroni M, Toepfer S, Kuhlmann U, Turlings TCJ (2010b) Selective breeding of entomopathogenic nematodes for enhanced attraction to a root signal did not reduce their establishment or persistence after field release. Plant Signal Behav 5(11):1450–1452PubMedCrossRefGoogle Scholar
  30. Hiltpold I, Toepfer S, Kuhlmann U, Turlings TCJ (2010c) How maize root volatiles influence the efficacy of entomopathogenic nematodes against the western corn rootworm? Chemoecology 20(2):155–162CrossRefGoogle Scholar
  31. Hugot JP, Baujard P, Morand S (2001) Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3:199–208CrossRefGoogle Scholar
  32. Kappers IF, Aharoni A, van Herpen T, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309(5743):2070–2072PubMedCrossRefGoogle Scholar
  33. Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206CrossRefGoogle Scholar
  34. Köllner T, Held M, Lenk C, Hiltpold I, Turlings TCJ, Gershenzon J, Degenhardt J (2008) A maize (E)-BETA-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494PubMedCrossRefGoogle Scholar
  35. Koppenhöfer AM, Fuzy EM (2006) Nematodes for white grub control: effects of soil type and soil moisture on infectivity and persistence. USGA Turfgrass Environ Res Online 5(18):1–10Google Scholar
  36. Kruitbos LM, Heritage S, Hapca S, Wilson MJ (2010) The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis. Parasitology 137(2):303–309PubMedCrossRefGoogle Scholar
  37. Lewis EE (2002) Behavioural ecology. In: Gaugler R (ed) Entomopathogenic nematology. CABI International, pp 205–223Google Scholar
  38. Lewis EE, Gaugler R, Harrison R (1993) Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can J Zool-Rev Canadienne De Zool 71(4):765–769CrossRefGoogle Scholar
  39. Lewis EE, Barbarosa B, Gaugler R (2002) Mating and sexual communication by Steinernema carpocapsae (Nemata: Steinernematidae). J Nematol 34(4):328–331PubMedGoogle Scholar
  40. Miller N, Estoup A, Toepfer S, Bourguet D, Lapchin L, Derridj S, Kim KS, Reynaud P, Furlan L, Guillemaud T (2005) Multiple transatlantic introductions of the western corn rootworm. Science 310(5750):992–992PubMedCrossRefGoogle Scholar
  41. Mitchell P (2011) Costs and benefits of controllin pest Diabrotica in maize in the United States. Paper presented at the 24th IWG Conference, Freiburg, Germany, 24–26 Oct. 2011Google Scholar
  42. Mitreva M, Blaxter ML, Bird DM, McCarter JP (2005) Comparative genomics of nematodes. Trends Genet 21(10):573–581PubMedCrossRefGoogle Scholar
  43. Nuttley WM, Atkinson-Leadbeater KP, van der Kooy D (2002) Serotonin mediates food-odor associative learning in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 99(19):12449–12454PubMedCrossRefGoogle Scholar
  44. O’Halloran DM, Burnell AM (2003) An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127:375–385PubMedCrossRefGoogle Scholar
  45. Pickett JA, Bruce TJA, Chamberlain K, Hassanali A, Khan ZR, Matthes MC, Napier JA, Smart LE, Wadhams LJ, Woodcock CM (2006) Plant volatiles yielding new ways to exploit plant defence. In: Dicke M, Takken W (eds) Chemical ecology: from gene to ecosystem. Springer, DordrechtGoogle Scholar
  46. Ramos-Rodriguez O, Campbell JF, Christen JM, Shapiro-Ilan DI, Lewis EE, Ramaswamy SB (2007) Attraction behaviour of three entomopathogenic nematode species towards infected and uninfected hosts. Parasitology 134:729–738PubMedCrossRefGoogle Scholar
  47. Rasmann S, Turlings TCJ (2008) First insights into specificity of below ground tritrophic interactions. Oikos 117:362–369CrossRefGoogle Scholar
  48. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737PubMedCrossRefGoogle Scholar
  49. Rasmann S, Erwin AC, Halitschke R, Agrawal AA (2011) Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J Ecol 99(1):16–25CrossRefGoogle Scholar
  50. Rasmann S, Ali J, Helder J, van der Putten W (2012) Ecology and evolution of soil nematode chemotaxis. J Chem Ecol. doi:10.1007/s10886-012-0118-6
  51. Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103(4):1129–1134PubMedCrossRefGoogle Scholar
  52. Shapiro-Ilan DI, Gouge DH, Piggott SJ, Fife JP (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol Control 38(1):124–133CrossRefGoogle Scholar
  53. Szalai M, Komáromi JP, Bažok R, Barčic JI, Kiss J, Toepfer S (2011) Generational growth rate estimates of Diabrotica virgifera virgifera populations (Coleoptera: Chrysomelidae). J Pest Sci 84(1):133–142CrossRefGoogle Scholar
  54. Tamo C, Ricard I, Held M, Davison AC, Turlings TCJ (2006) A comparison of naive and conditioned responses of three generalist endoparasitoids of lepidopteran larvae to host-induced plant odours. Anim Biol 56(2):205–220CrossRefGoogle Scholar
  55. Toepfer S, Haye T, Erlandson M, Goettel M, Lundgren JG, Kleespies RG, Weber DC, Walsh GC, Peters A, Ehlers RU, Strasser H, Moore D, Keller S, Vidal S, Kuhlmann U (2009) A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): implications for sustainable pest management. Biocontrol Sci Technol 19:1–65CrossRefGoogle Scholar
  56. Torayama I, Ishihara T, Katsura I (2007) Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci 27(4):741–750PubMedCrossRefGoogle Scholar
  57. Torr P, Heritage S, Wilson MJ (2004) Vibrations as a novel signal for host location by parasitic nematodes. Int J Parasitol 34(9):997–999PubMedCrossRefGoogle Scholar
  58. Turlings TCJ, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opinion Plant Biol 9(4):421–427CrossRefGoogle Scholar
  59. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250(4985):1251–1253PubMedCrossRefGoogle Scholar
  60. Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D (1998) Timing of induced volatile emissions in maize seedlings. Planta 207(1):146–152CrossRefGoogle Scholar
  61. Turlings TCJ, Davison AC, Tamò C (2004) A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trapping. Physiol Entomol 29:45–55CrossRefGoogle Scholar
  62. Turner SL, Li N, Guda T, Githure J, Cardé RT, Ray A (2011) Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474(7349):87–91PubMedCrossRefGoogle Scholar
  63. van Tol RWHM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4(4):292–294CrossRefGoogle Scholar
  64. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172CrossRefGoogle Scholar
  65. Vidal S, Kuhlmann U, Edwards R (2005) Western corn rootworm: ecology and management. CABI Publishers, WallingfordCrossRefGoogle Scholar
  66. Wang Y, Gaugler R (1998) Host and penetration site location by entomopathogenic nematodes against Japanese beetle larvae. J Invertebr Pathol 72(3):313–318PubMedCrossRefGoogle Scholar
  67. Wesseler J, Fall EH (2010) Potential damage costs of Diabrotica virgifera virgifera infestation in Europe - the ‘no control’ scenario. J Appl Entomol 134(5):385–394CrossRefGoogle Scholar
  68. Wilson MJ, Ehlers RU, Glazer I (2012) Entomopathogenic nematode foraging strategies – is Steinernema carpocapsae really an ambush forager? Nematology in press. doi:10.1163/156854111X617428

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ted C. J. Turlings
    • 1
  • Ivan Hiltpold
    • 2
  • Sergio Rasmann
    • 3
  1. 1.FARCE Laboratory, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.University of MissouriColumbiaUSA
  3. 3.Institute of Evolution and EcologyUniversity of LausanneLausanneSwitzerland

Personalised recommendations