Plant and Soil

, Volume 359, Issue 1–2, pp 197–204

Is plant genetic control of ectomycorrhizal fungal communities an untapped source of stable soil carbon in managed forests?

Review Article

Abstract

Background

Ectomycorrhizal (ECM) fungi provide one of the main pathways for carbon (C) to move from trees into soils, where these fungi make significant contributions to microbial biomass and soil respiration.

Scope

ECM fungal species vary significantly in traits that likely influence C sequestration, such that forest C sequestration potential may be driven in part by the existing community composition of ECM fungi. Moreover, accumulating experimental data show that tree genotypes differ in their compatibility with particular ECM fungal species, i.e. mycorrhizal traits of forest trees are heritable. Those traits are genetically correlated with other traits for which tree breeders commonly select, suggesting that selection for traits of interest, such as disease resistance or growth rate, could lead to indirect selection for or against particular mycorrhizal traits of trees in forest plantations.

Conclusions

Altogether, these observations suggest that selection of particular tree genotypes could alter the community composition of symbiotic ECM fungi in managed forests, with cascading effects on soil functioning and soil C sequestration.

Keywords

Carbon sequestration Ectomycorrhizal fungi Pinus Extracellular enzymes 

References

  1. Agerer R (2001) Exploration types of ectomycorrhizae - A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  2. Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge, 184Google Scholar
  3. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, OxfordGoogle Scholar
  4. Bidartondo MI, Ek H, Wallander H, Soderstrom B (2001) Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytol 151:543–550CrossRefGoogle Scholar
  5. Buee M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955CrossRefGoogle Scholar
  6. Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456PubMedCrossRefGoogle Scholar
  7. Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733–1740CrossRefGoogle Scholar
  8. Courty PE, Franc A, Garbaye J (2010) Temporal and functional pattern of secreted enzyme activities in an ectomycorrhizal community. Soil Biol Biochem 42:2022–2025CrossRefGoogle Scholar
  9. Courty PE, Labbe J, Kohler A, Marcais B, Bastien C, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260PubMedCrossRefGoogle Scholar
  10. Dixon RK, Garrett HE, Stelzer HE (1987) Growth and ectomycorrhizal development of loblolly pine progenies inoculated with 3 isolates of Pisolithus tinctorius. Silvae Genetica 36:240–245Google Scholar
  11. Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJP, Oren R, Palmroth S, Phillips RP, Pippen JS, Pritchard SG, Treseder KK, Schlesinger WH, DeLucia EH, Finzi AC (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO(2). Ecol Lett 14:349–357PubMedCrossRefGoogle Scholar
  12. Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133PubMedCrossRefGoogle Scholar
  13. Galik CS, Jackson RB (2009) Risks to forest carbon offset projects in a changing climate. For Ecol Manage 257:2209–2216CrossRefGoogle Scholar
  14. Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583CrossRefGoogle Scholar
  15. Garten CT, Wullschleger SD, Classen AT (2011) Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 35:214–226CrossRefGoogle Scholar
  16. Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24CrossRefGoogle Scholar
  17. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12:891–899CrossRefGoogle Scholar
  18. Heinemeyer A, Hartley IP, Evans SP, De la Fuente JAC, Ineson P (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob Chang Biol 13:1786–1797CrossRefGoogle Scholar
  19. Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569PubMedCrossRefGoogle Scholar
  20. Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83CrossRefGoogle Scholar
  21. Hoeksema JD, Thompson JN (2007) Geographic structure in a widespread plant–mycorrhizal interaction: pines and false truffles. J Evol Biol 20:1148–1163PubMedCrossRefGoogle Scholar
  22. Hoeksema JD, Piculell B, Thompson JN (2009) Within-population genetic variability in mycorrhizal interactions. Communicative and Integrative Biology 2:110–112PubMedGoogle Scholar
  23. Hogberg MN, Hogberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795CrossRefGoogle Scholar
  24. Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black box. Mol Ecol 10:1855–1871PubMedCrossRefGoogle Scholar
  25. Jackson RB, Schlesinger WH (2004) Curbing the US carbon deficit. Proc Natl Acad Sci U S A 101:15827–15829PubMedCrossRefGoogle Scholar
  26. Johnsen KH, Wear D, Oren R, Teskey RO, Sanchez F, Will R, Butnor J, Markewitz D, Richter D, Rials T, Allen HL, Seiler J, Ellsworth D, Maier C, Katul G, Dougherty PM (2001) Carbon sequestration and southern pine forests. J For 99:14–21Google Scholar
  27. Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151CrossRefGoogle Scholar
  28. Joyce L, Aber J, McNulty S, Dale V, Hansen A, Irland L, Neilson R, Skog K (2001) Potential consequences of climate variability and change for the forests of the United States. In Climate Change Impacts on the United States. Cambridge University Press, Cambridge, pp 489–523Google Scholar
  29. Karlinski L, Rudawska M, Kieliszewska-Rokicka B, Leski T (2010) Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi. Mycorrhiza 20:315–324PubMedCrossRefGoogle Scholar
  30. Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc R Soc B Biol Sci 274:3119–3126CrossRefGoogle Scholar
  31. Koide RT, Malcolm GM (2009) N concentration controls decomposition rates of different strains of ectomycorrhizal fungi. Fungal Ecol 2:197–202CrossRefGoogle Scholar
  32. Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824PubMedCrossRefGoogle Scholar
  33. Labbe J, Jorge V, Kohler A, Vion P, Marcais B, Bastien C, Tuskan GA, Martin F, Le Tacon F (2011) Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F(1) poplar cross and differential expression of genes in ectomycorrhizas of the two parents: Populus deltoides and Populus trichocarpa. Tree Genetics & Genomes 7:617–627CrossRefGoogle Scholar
  34. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22CrossRefGoogle Scholar
  35. Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett 9:955–959PubMedCrossRefGoogle Scholar
  36. Leake JR, Donnelly DP, Boddy L (2002) Interactions between ectomycorrhizal and saprotrophic fungi. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal Ecology. Springer-Verlag, Berlin, pp 345–372Google Scholar
  37. Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany-Revue Canadienne De Botanique 82:1016–1045CrossRefGoogle Scholar
  38. Leski T, Aucina A, Skridaila A, Pietras M, Riepsas E, Rudawska M (2010) Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. Mycorrhiza 20:473–481PubMedCrossRefGoogle Scholar
  39. Lilleskov EALEA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183CrossRefGoogle Scholar
  40. Lindahl BD, de Boer W, Finlay RD (2010) Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME J 4:872–881PubMedCrossRefGoogle Scholar
  41. Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Glob Chang Biol 9:838–848CrossRefGoogle Scholar
  42. Malajczuk N (1987) Ecology and management of ectomycorrhizal fungi in regenerating forest ecosystems in Australia. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the Next Decade: Practical Applications and Research Priorities. University of Florida, Gainesville, pp 118–120Google Scholar
  43. Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502PubMedCrossRefGoogle Scholar
  44. Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287PubMedCrossRefGoogle Scholar
  45. Piculell BJ, Hoeksema JD, Thompson JN (2008) Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics. BMC Biol 6:23 (11 pages)PubMedCrossRefGoogle Scholar
  46. Prestemon JP, Abt RC (2002) The Southern timber market to 2040. J For 100:16–22Google Scholar
  47. Pritchard SG, Strand AE, McCormack ML, Davis MA, Oren R (2008) Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free-air-CO2-enrichment. Glob Chang Biol 14:1252–1264CrossRefGoogle Scholar
  48. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  49. Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A (2009) Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci 14:542–549PubMedCrossRefGoogle Scholar
  50. Schafer KVR, Oren R, Ellsworth DS, Lai CT, Herrick JD, Finzi AC, Richter DD, Katul GG (2003) Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Glob Chang Biol 9:1378–1400CrossRefGoogle Scholar
  51. Schroter D, Brussaard L, De Deyn G, Poveda K, Brown VK, Berg MP, Wardle DA, Moore J, Wall DH (2004) Trophic interactions in a changing world: modelling aboveground-belowground interactions. Basic Appl Ecol 5:515–528CrossRefGoogle Scholar
  52. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191PubMedCrossRefGoogle Scholar
  53. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Amsterdam, 787Google Scholar
  54. Sthultz CM, Whitham TG, Kennedy K, Deckert R, Gehring CA (2009) Genetically based susceptibility to herbivory influences the ectomycorrhizal fungal communities of a foundation tree species. New Phytol 184:657–667PubMedCrossRefGoogle Scholar
  55. Tagu D, Bastien C, Faivre-Rampant P, Garbaye J, Vion P, Villar M, Martin F (2005) Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full-sib family. Mycorrhiza 15:87–91PubMedCrossRefGoogle Scholar
  56. Taylor AFS, Gebauer G, Read DJ (2004) Uptake of nitrogen and carbon from double-labelled (N-15 and C-13) glycine by mycorrhizal pine seedlings. New Phytol 164:383–388CrossRefGoogle Scholar
  57. Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Koljag U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist 188:291-301Google Scholar
  58. Toth R, Toth D, Starke D, Smith DR (1990) Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Canadian Journal of Botany-Revue Canadienne De Botanique 68:1039–1044CrossRefGoogle Scholar
  59. Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200CrossRefGoogle Scholar
  60. Treseder KK, Masiello CA, Lansing JL, Allen MF (2004) Species-specific measurements of ectomycorrhizal turnover under N-fertilization: combining isotopic and genetic approaches. Oecologia 138:419–425PubMedCrossRefGoogle Scholar
  61. Trocha LK, Mucha J, Eissenstat DM, Reich PB, Oleksyn J (2010) Ectomycorrhizal identity determines respiration and concentrations of nitrogen and non-structural carbohydrates in root tips: a test using Pinus sylvestris and Quercus robur saplings. Tree Physiol 30:648–654PubMedCrossRefGoogle Scholar
  62. van der Putten WH, Bardgett RD, de Ruiter PC, Hol WHG, Meyer KM, Bezemer TM, Bradford MA, Christensen S, Eppinga MB, Fukami T, Hemerik L, Molofsky J, Schadler M, Scherber C, Strauss SY, Vos M, Wardle DA (2009) Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161:1–14PubMedCrossRefGoogle Scholar
  63. Wallander H, Massicotte HB, Nylund JE (1997) Seasonal variation in protein, ergosterol and chitin in five morphotypes of Pinus sylvestris L ectomycorrhizae in a mature Swedish forest. Soil Biol Biochem 29:45–53CrossRefGoogle Scholar
  64. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633PubMedCrossRefGoogle Scholar
  65. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, Leroy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523PubMedCrossRefGoogle Scholar
  66. Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MississippiUniversityUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations