Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon

Abstract

Backgroud and aims

Powdery mildew elicited by Podosphaera fusca is an important threat to cucurbits. In order to find alternatives to the current use of chemicals, we examined the potential use of plant growth-promoting rhizobacteria (PGPR) for controlling the disease by induction of systemic resistance in the host plant.

Methods

A collection of Bacillus and Pseudomonas strains from different origins was studied, including strains isolated from roots of disease-free melon plants obtained from a greenhouse plagued by powdery mildew. The selection of best candidates was based on the evaluation of different traits commonly associated with PGPR, such as antifungal and siderophore production, swimming and swarming motilities, biofilm formation, auxin production and promotion of root development.

Results

Three Bacillus strains, B. subtilis UMAF6614 and UMAF6639 and B. cereus UMAF8564, and two Pseudomonas fluorescens strains, UMAF6031 and UMAF6033, were selected after ranking the strains using a nonparametric statistics test. Applied to melon seedlings, the selected strains were able to promote plant growth, increasing fresh weight up to 30%. Furthermore, these strains provided protection against powdery mildew and also against angular leaf spot caused by Pseudomonas syringae pv. lachrymans, with disease reductions of up to 60%.

Conclusions

These results suggest that the use of ISR-promoting PGPR could be a promising strategy for the integrated control of cucurbit powdery mildew and other cucurbit diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    PubMed  CAS  Article  Google Scholar 

  2. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    PubMed  CAS  Article  Google Scholar 

  3. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    CAS  Article  Google Scholar 

  4. Arrebola E, Cazorla FM, Romero D, Pérez-García A, de Vicente A (2007) A nonribosomal peptide synthetase gene (mgoA) of Pseudomonas syringae pv. syringae is involved in mangotoxin biosynthesis and is required for full virulence. Mol Plant Microbe Interact 20:500–509

    PubMed  CAS  Article  Google Scholar 

  5. Bélanger RR, Labbé C (2002) Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews. A comprehensive treatise. APS Press, USA, pp 256–267

    Google Scholar 

  6. Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    CAS  Article  Google Scholar 

  7. Cazorla FM, Duckett SB, Bergström T, Noreen S, Odijk R, Lugtenberg BJJ, Thomas-Oates JE, Bloemberg GV (2006) Biocontrol of Dematophora root of avocado by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant Microbe Interact 19:418–428

    PubMed  CAS  Article  Google Scholar 

  8. Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJ, De Vicente A, Bloemberg GV (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959

    PubMed  CAS  Article  Google Scholar 

  9. Chambel L, Pelica F, Teodoro AM, Neves-Martins J, Palminha J (1994) Development of a new in vitro PGPR screening method. In: Proceedings of the Third International Workshop on Plant Growth-Promoting Rhizobacteria. Adelaide, Australia, p. 33

  10. Chen C, Bélanger R, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Phythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    CAS  Article  Google Scholar 

  11. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37

    PubMed  CAS  Article  Google Scholar 

  12. Codina JC, Cazorla FM, Pérez-García A, de Vicente A (2000) Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods. Environ Toxicol Chem 19:1552–1558

    CAS  Article  Google Scholar 

  13. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    PubMed  CAS  Article  Google Scholar 

  14. Connelly MB, Young GM, Sloma A (2004) Extracellular proteolytic plays a central role in swarming motility in Bacillus subtilis. J Bacteriol 186:4159–4167

    PubMed  CAS  Article  Google Scholar 

  15. Dekkers LCCJ, de Weger BLA, Wijffelman CA, Spaink HP, Lugtenberg BJJ (1998) A two-component system plays an important role in the root-colonising ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 11:45–56

    PubMed  CAS  Article  Google Scholar 

  16. De Vleesschauwer D, Chernin L, Höfte MM (2009) Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol 9:9

    PubMed  Article  Google Scholar 

  17. Elad Y, Chet I, Baker R (1987) Increased growth response of plants induced by rhizobacteria antagonistic to soilborne pathogenic fungi. Plant Soil 98:325–330

    Article  Google Scholar 

  18. Fernández-Ortuño D, Pérez-García A, López-Ruiz F, Romero D, de Vicente A, Torés JA (2006) Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south central Spain. Eur J Plant Pathol 115:215–222

    Article  Google Scholar 

  19. Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690

    PubMed  CAS  Article  Google Scholar 

  20. Janda JM, Abbot SL (2010) The genus Aeromonas: taxonomy, pathogenicity and infection. Clin Microbiol Rev 23:35–73

    PubMed  CAS  Article  Google Scholar 

  21. Jeun YC, Park KS, Kim CH, Fowler WD, Kloepper JW (2004) Cytological observations of cucumber plants during induced resistance elicited by rhizobacteria. Biol Control 29:34–42

    Article  Google Scholar 

  22. Joo G-J, Kim Y-M, Kim J-T, Rhee I-K, Kim J-H, Lee I-J (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    PubMed  CAS  Google Scholar 

  23. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Article  Google Scholar 

  24. Latha P, Anand T, Ragupathi N, Prakasam V, Samiyappan R (2009) Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biol Control 50:85–93

    Article  Google Scholar 

  25. López-Ruiz FJ, Pérez-García A, Fernández-Ortuño D, Romero D, García E, de Vicente A, Brown JKM, Torés JA (2010) Sensitivities to DMI fungicides in populations of Podosphaera fusca in south central Spain. Pest Manag Sci 66:801–808

    PubMed  Article  Google Scholar 

  26. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Article  Google Scholar 

  27. McGrath MT (2001) Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Dis 85:236–245

    Article  Google Scholar 

  28. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potencial of Bacillus subtilis. Appl Environ Microbiol 69:29–38

    CAS  Google Scholar 

  29. Ongena M, Adam A, Paquot M, Brams A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipoptides of Bacillus subtilis as elecitors of induced systemic resistance in plant. Environ Microbiol 9:1084–1090

    PubMed  CAS  Article  Google Scholar 

  30. Pérez-García A, Olalla L, Rivera ME, del Pino D, Canovas I, de Vicente A, Torés JA (2001) Development of Sphaerotheca fusca on susceptible, resistant and temperature-sensitive resistant cultivars. Mycol Res 105:1216–1222

    Article  Google Scholar 

  31. Pérez-García A, Romero D, Fernández-Ortuño D, López-Ruiz F, de Vicente A, Torés JA (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol Plant Pathol 10:153–160

    PubMed  Article  Google Scholar 

  32. Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    PubMed  Article  Google Scholar 

  33. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protect 20:1–11

    CAS  Article  Google Scholar 

  34. Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    PubMed  CAS  Article  Google Scholar 

  35. Romero D, Pérez-García A, Rivera ME, Cazorla FM, de Vicente A (2004) Isolation and evaluation of antagonist bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64:263–269

    PubMed  CAS  Article  Google Scholar 

  36. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007a) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    PubMed  CAS  Article  Google Scholar 

  37. Romero D, de Vicente A, Zeriouh H, Cazorla FM, Fernandez-Ortuño D, Torés JA, Pérez-García A (2007b) Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathol 56:976–986

    Article  Google Scholar 

  38. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525

    PubMed  CAS  Article  Google Scholar 

  39. Ryu CM, Hu CH, Reddy MS, Kloepper JW (2003) Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol 160:413–420

    CAS  Article  Google Scholar 

  40. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    PubMed  CAS  Article  Google Scholar 

  41. Schwym B, Neidlands JB (1987) Universal assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  Google Scholar 

  42. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    PubMed  CAS  Article  Google Scholar 

  43. Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  44. Van Loon LC, Bakker PA, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Article  Google Scholar 

  45. Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    PubMed  CAS  Article  Google Scholar 

  46. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Article  Google Scholar 

  47. Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  48. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, GrimsonM FMA, Ryu CM, Allen R, Melo IS, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Plan Nacional de I+D+I of the Ministerio de Ciencia e Innovación, Spain (AGL2007-65340-C02-01 and AGL2010-21848-C02-01), cofinanced by FEDER funds (European Union).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alejandro Pérez-García.

Additional information

Responsible Editor: Peter A.H. Bakker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

García-Gutiérrez, L., Romero, D., Zeriouh, H. et al. Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant Soil 358, 201–212 (2012). https://doi.org/10.1007/s11104-012-1173-z

Download citation

Keywords

  • Bacillus cereus
  • Bacillus subtilis
  • Biological control
  • Induced systemic resistance (ISR)
  • Podosphaera fusca
  • Powdery mildews
  • Pseudomonas fluorescens