Plant and Soil

, Volume 357, Issue 1–2, pp 339–353 | Cite as

Seasonal methane dynamics in three temperate grasslands on peat

  • C.-M. Schäfer
  • L. Elsgaard
  • C. C. Hoffmann
  • S. O. Petersen
Regular Article


Background and Aims

Drained peatlands are considered to be insignificant CH4 sources, but the effect of drainage on CH4 dynamics has not been extensively studied. We investigated seasonal dynamics of CH4 in two fen peat soils and one bog peat soil under permanent grassland in Denmark.


Soil CH4 concentrations were measured several times throughout the year in parallel to a one year CH4 flux monitoring campaign with static chambers. Additionally, CH4 production potentials were determined in a laboratory incubation assay for the bog soil.


Methane fluxes were generally negligible, even though soil CH4 concentrations of up to 155 and 1000 μmol CH4 dm−3 were measured in one of the fen peats and in the bog peat, respectively. Significant CH4 concentrations were observed above the water table. Methane production assays confirmed the presence of viable methanogens in the upper parts of the bog peat soil. The aerenchymous plant Juncus effusus L. liberated CH4 from the peat at rates of up to 3.3 mg CH4 m−2 h−1. No CH4 dynamics were observed in the second fen peat which, in contrast to the other two sites, had high sulfate concentrations.


Peat type and the distribution of aerenchymous plants should be considered before dismissing grasslands on peat as CH4 sources.


Peat soils Methane Permanent grassland Juncus effusus 





  1. Aaby B (1990) Geologi og mosedannelse i Store Vildmose området. (Geology and bog formation in the Store Vildmose region [Jylland]). In: Miljöministeriet (Ministry of Environment) (ed) Landet og loven (Country and the law), pp. 141–151Google Scholar
  2. Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220. doi:10.1111/j.1574-6968.1995.tb07421.x CrossRefGoogle Scholar
  3. Askaer L, Elberling B, Glud RN, Kühl M, Lauritsen FR, Joensen HP (2010) Soil heterogeneity effects on O2 distribution and CH4 emissions from wetlands: In situ and mesocosm studies with planar O2 optodes and membrane inlet mass spectrometry. Soil Biol Biochem 42:2254–2265. doi:10.1016/j.soilbio.2010.08.026 CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-39.
  5. Beer J, Blodau C (2007) Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochim Cosmochim Acta 71:2989–3002. doi:10.1016/j.gca.2007.03.010 CrossRefGoogle Scholar
  6. Blodau C, Moore TR (2003) Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse. Soil Biol Biochem 35:535–547. doi:10.1016/S0038-0717(03)00008-7 CrossRefGoogle Scholar
  7. Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327:322–325. doi:10.1126/science.1175176 PubMedCrossRefGoogle Scholar
  8. Boelter DH (1968) Important physical properties of peat materials. In: Department of Energy, Minds and Resources and National Research Council of Canada (ed) Proceedings, third international peat congress. Quebec, Canada, pp. 18–23Google Scholar
  9. Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124. doi:10.1046/j.1462-2920.2002.00279.x PubMedCrossRefGoogle Scholar
  10. Boughton EH, Quintana-Ascencio PF, Bohlen PJ (2011) Refuge effects of Juncus effusus in grazed, subtropical wetland plant communities. Plant Ecol 212:451–460. doi:10.1007/s11258-010-9836-4 CrossRefGoogle Scholar
  11. Byrne KA, Chojnicki B, Christensen TR, Drösler M, Freibauer A, Friborg T, Frolking S, Lindroth A, Mailhammer J, Malmer N, Selin P, Turunen J, Valentini R, Zetterberg L (2004) EU peatlands: Current carbon stocks and trace gas fluxes. Carboeurope-GHG, concerted action synthesis of the European greenhouse gas budget, Department of Forest Science and Environment, Viterbo, ItalyGoogle Scholar
  12. Clymo RS, Bryant CL (2008) Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim Cosmochim Acta 72:2048–2066. doi:10.1016/j.gca.2008.01.032 CrossRefGoogle Scholar
  13. Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36. doi:10.1046/j.1365-3040.2003.00846.x CrossRefGoogle Scholar
  14. Couwenberg J (2009a) Emission factors for managed peat soils (organic soils, histosols). An analysis of IPCC default values. Report, Wetlands InternationalGoogle Scholar
  15. Couwenberg J (2009b) Methane emissions from peat soils (organic soils, histosols). Facts, MRV-ability, emission factors. Report, Wetlands InternationalGoogle Scholar
  16. de Deyn GB, Quirk H, Oakley S, Ostle N, Bardgett RD (2011) Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8:1131–1139. doi:10.5194/bg-8-1131-2011 CrossRefGoogle Scholar
  17. Drösler M (2005) Trace gas exchange and climatic relevance of bog ecosystems, Southern Germany. Dissertation, Technische Universität MünchenGoogle Scholar
  18. Drösler M, Freibauer A, Christensen TR, Friborg T (2008) Observations and status of Peatland greenhouse gas emissions in Europe. In: Dolman AJ, Valentini R, Freibauer A (eds) The continental-scale greenhouse gas balance of Europe. Springer, New York, pp 243–261CrossRefGoogle Scholar
  19. Flessa H, Wild U, Klemisch M, Pfadenhauer J (1998) Nitrous oxide and methane fluxes from organic soils under agriculture. Eur J Soil Sci 49:327–335. doi:10.1046/j.1365-2389.1998.00156.x CrossRefGoogle Scholar
  20. Fogg PG, Gerrard W (1991) Solubility of gases in liquids. A critical evaluation of gas/liquid systems in theory and practice. Wiley, ChichesterGoogle Scholar
  21. Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226. doi:10.1006/anae.2000.0345 PubMedCrossRefGoogle Scholar
  22. Hahn-Schöfl M, Zak D, Minke M, Gelbrecht J, Augustin J, Freibauer A (2011) Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2. Biogeosciences 8:1539–1550. doi:10.5194/bg-8-1539-2011 CrossRefGoogle Scholar
  23. Hendriks DMD, van Huissteden J, Dolman AJ (2010) Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agric For Meteorol 150:757–774. doi:10.1016/j.agrformet.2009.06.017 CrossRefGoogle Scholar
  24. Holden J, Chapman PJ, Labadz JC (2004) Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progr Phys Geogr 28:95–123. doi:10.1191/0309133304pp403ra CrossRefGoogle Scholar
  25. Hornibrook ERC, Bowes HL, Culbert A, Gallego-Sala AV (2009) Methanotrophy potential versus methane supply by pore water diffusion in peatlands. Biogeosciences 6:1491–1504. doi:10.5194/bgd-5-2607-2008 CrossRefGoogle Scholar
  26. Hutchinson GL, Livingston GP (2001) Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. Eur J Soil Sci 52:675–682. doi:10.1046/j.1365-2389.2001.00415.x CrossRefGoogle Scholar
  27. Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Am J 45:311–316CrossRefGoogle Scholar
  28. Joosten H, Clarke D (2002) Wise use of mires and peatlands. Background and principles including a framework for decision-making. International Peat Society, Jyväskylä. International Mire Conservation Group, Greifswald.Google Scholar
  29. Kelker D, Chanton J (1997) The effect of clipping on methane emissions from Carex. Biogeochemistry 39:37–44. doi:10.1023/A:1005866403120 CrossRefGoogle Scholar
  30. Kettunen A, Kaitala V, Lehtinen A, Lohila A, Alm J, Silvola J, Martikainen PJ (1999) Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biol Biochem 31:1741–1749. doi:10.1016/S0038-0717(99)00093-0 CrossRefGoogle Scholar
  31. King JY, Reeburgh WS (2002) A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biol Biochem 34:173–180. doi:10.1016/S0038-0717(01)00164-X CrossRefGoogle Scholar
  32. Knorr KH, Glaser B, Blodau C (2008) Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought. Biogeosciences 5:1457–1473. doi:10.5194/bg-5-1457-2008 CrossRefGoogle Scholar
  33. Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot 105:141–153. doi:10.1093/aob/mcp201 PubMedCrossRefGoogle Scholar
  34. Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421. doi:10.1016/S1002-0160(09)00003-4 CrossRefGoogle Scholar
  35. Langeveld CA, Segers R, Dirks BOM, van den Pol-Van DA, Velthof GL, Hensen A (1997) Emissions of CO2, CH4 and N2O from pasture on drained peat soils in the Netherlands. Eur J Agron 7:35–42. doi:10.1016/S0378-519X(97)80008-6 CrossRefGoogle Scholar
  36. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications a synthesis. Biogeosciences 5:1475–1491. doi:10.5194/bg-5-1475-2008 CrossRefGoogle Scholar
  37. Maljanen M, Sigurdsson BD, Gudmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries—present knowledge and gaps. Biogeosciences 7:2711–2738. doi:10.5194/bg-7-2711-2010 CrossRefGoogle Scholar
  38. Miller TL, Wolin MJ (1974) A serum bottle modification of the hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987PubMedGoogle Scholar
  39. Neale CN, Hughes JB, Ward C (2000) Impacts of unsaturated zone properties on oxygen transport and aquifer reaeration. Ground Water 38:784–794. doi:10.1111/j.1745-6584.2000.tb02714.x CrossRefGoogle Scholar
  40. Paul S, Küsel K, Alewell C (2006) Reduction processes in forest wetlands: Tracking down heterogeneity of source/sink functions with a combination of methods. Soil Biol Biochem 38:1028–1039. doi:10.1016/j.soilbio.2005.09.001 CrossRefGoogle Scholar
  41. Pedersen AR, Petersen SO, Schelde K (2010) A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur J Soil Sci 61:888–902. doi:10.1111/j.1365-2389.2010.01291.x CrossRefGoogle Scholar
  42. Petersen SO, Schjønning P, Thomsen IK, Christensen BT (2008) Nitrous oxide evolution from structurally intact soil as influenced by tillage and soil water content. Soil Biol Biochem 40:967–977. doi:10.1016/j.soilbio.2007.11.017 CrossRefGoogle Scholar
  43. Petersen SO, Hoffmann CC, Schäfer CM, Blicher-Mathiesen G, Elsgaard L, Kristensen K, Larsen SE, Torp SE, Greve MH (2012) Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture. Biogeosciences 9:403–422. doi:10.5194/bg-9-403-2012 CrossRefGoogle Scholar
  44. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  45. Rana N, Sellers BA (2009) Soft Rush (Juncus effusus) control in Florida pastures. Weed Technol 23:321–323. doi:10.1614/WT-08-159.1 CrossRefGoogle Scholar
  46. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  47. Roden E, Wetzel R (2003) Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Microb Ecol 45:252–258. doi:10.1007/s00248-002-1037-9 PubMedCrossRefGoogle Scholar
  48. Saarnio S, Alm J, Silvola J, Lohila A, Nykänen H, Martikainen PJ (1997) Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia 110:414–422. doi:10.1007/s004420050176 CrossRefGoogle Scholar
  49. Saarnio S, Winiwarter W, Leitão J (2009) Methane release from wetlands and watercourses in Europe. Atmos Environ 43:1421–1429. doi:10.1016/j.atmosenv.2008.04.007 CrossRefGoogle Scholar
  50. Scharling M (2000) KLIMAGRID—Danmark, normaler 1961–90, måneds- og årsværdier. Nedbør 10*10, 20*20 & 40*40 km, temperatur og potential fordampning 20*20 & 40*40 km. Metodebeskrivelse & dataset. Technical Report 00-11, CopenhagenGoogle Scholar
  51. Schwärzel K, Renger M, Sauerbrey R, Wessolek G (2002) Soil physical characteristics of peat soils. J Plant Nutr Soil Sci 165:479–486. doi:10.1002/1522-2624(200208)165:4 CrossRefGoogle Scholar
  52. Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New YorkCrossRefGoogle Scholar
  53. Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8:779–793. doi:10.5194/bg-8-779-2011 CrossRefGoogle Scholar
  54. Stanley EH, Ward AK (2010) Effects of vascular plants on seasonal pore water carbon dynamics in a lotic wetland. Wetlands 30:889–900. doi:10.1007/s13157-010-0087-x CrossRefGoogle Scholar
  55. Strack M, Waddington JM, Tuittila ES (2004) Effect of water table drawdown on northern peatland methane dynamics: implications for climate change. Global Biogeochem Cycles 18:1–7. doi:10.1029/2003GB002209 CrossRefGoogle Scholar
  56. Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82. doi:10.1007/s10533-004-6124-1 CrossRefGoogle Scholar
  57. Teh YA, Silver WL, Conrad ME (2005) Oxygen effects on methane production and oxidation in humid tropical forests. Glob Change Biol 11:1283–1297. doi:10.1111/j.1365-2486.2005.00983.x CrossRefGoogle Scholar
  58. Tokida T, Miyazaki T, Mizoguchi M (2009) Physical controls on ebullition losses of methane from peatlands. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD (eds) Carbon cycling in northern Peatlands. American Geophysical Union, Washington, pp 219–228CrossRefGoogle Scholar
  59. van Bodegom PM, Scholten JCM, Stams AJM (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol Ecol 49:261–268. doi:10.1016/j.femsec.2004.03.017 PubMedCrossRefGoogle Scholar
  60. van Huissteden J, van den Bos R, Marticorena Alvarez I (2006) Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Neth J Geosci 85:3–18Google Scholar
  61. Verry ES, Boelter DH, Paivanen J, Nichols DS, Malterer T, Gafni A (2011) Physical properties of organic soils. In: Kolka R, Sebestyen S, Verry ES, Brooks K (eds) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, pp 135–176CrossRefGoogle Scholar
  62. Watson A, Nedwell DB (1998) Methane production and emission from peat: the influence of anions (sulphate, nitrate) from acid rain. Atmos Environ 32:3239–3245. doi:10.1016/S1352-2310(97)00501-3 CrossRefGoogle Scholar
  63. Yaacobi M, Ben-Naim A (1973) Hydrophobic interaction in water-ethanol mixtures. J Solution Chem 2:425–443. doi:10.1007/BF00651005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C.-M. Schäfer
    • 1
  • L. Elsgaard
    • 1
  • C. C. Hoffmann
    • 2
  • S. O. Petersen
    • 1
  1. 1.Department of AgroecologyAarhus UniversityTjeleDenmark
  2. 2.Department of BioscienceAarhus UniversitySilkeborgDenmark

Personalised recommendations