Skip to main content

Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster

Abstract

Background and aims

Phosphorus from phytate, although constituting the main proportion of organic soil P, is unavailable to plants. Despite the well-known effects of rhizosphere trophic relationships on N mineralization, no work has been done yet on P mineralization. We hypothesized that the interactions between phytate-mineralizing bacteria, mycorrhizal fungi and bacterial grazer nematodes are able to improve plant P use from phytate.

Methods

We tested this hypothesis by growing Pinus pinaster seedlings in agar containing phytate as P source. The plants, whether or not ectomycorrhizal with the basidiomycete Hebeloma cylindrosporum, were grown alone or with a phytase-producing bacteria Bacillus subtilis and two bacterial-feeder nematodes, Rhabditis sp. and Acrobeloides sp. The bacteria and the nematodes were isolated from ectomycorrhizal roots and soil from P. pinaster plantations.

Results

Only the grazing of bacteria by nematodes enhanced plant P accumulation. Although plants increased the density of phytase-producing bacteria, these bacteria alone did not improve plant P nutrition. The seedlings, whether ectomycorrhizal or not, displayed a low capacity to use P from phytate.

Conclusions

In this experiment, the bacteria locked up the phosphorus, which was delivered to plant only by bacterial grazers like nematodes. Our results open an alternative route for better utilization of poorly available organic P by plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adams MA, Pate JS (1992) Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp). Plant Soil 145:107–113

    Article  Google Scholar 

  2. Aescht T, Foissner W (1992) Effect of mineral and organic fertilisers on the microfauna in a high-altitude reforestation trial. Biol Fertil Soils 13:17–24

    CAS  Article  Google Scholar 

  3. Ali MA, Louche J, Legname E, Duchemin M, Plassard C (2009) Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Tree Physiol 29:1587–1597

    PubMed  CAS  Article  Google Scholar 

  4. Aquino MT, Plassard C (2004) Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. FEMS J Microbiol Ecol 48:149–156

    Article  Google Scholar 

  5. Barnett GM (1994) Phosphorus forms in animal manures. Biores Technol 49:139–147

    CAS  Article  Google Scholar 

  6. Bernard EC (1992) Soil nematode biodiversity. Biol Fertil Soils 14:99–103

    Article  Google Scholar 

  7. Blanc C, Sy M, Djigal D, Brauman A, Normand P, Villenave C (2006) Nutrition on bacteria by bacterial-feeding nematodes and consequences on the structure of soil bacterial community. Eur J Soil Biol 42:70–78

    Article  Google Scholar 

  8. Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  Google Scholar 

  9. Bonkowski M, Jentschke G, Scheu S (2001) Contrasting effects of microbes in the rhizosphere: interactions of mycorrhiza (Paxillus involutus (Batsch) Fr.), naked amoebae (Protozoa) and Norway Spruce seedlings (Picea abies Karst.). Appl Soil Ecol 18:193–204

    Article  Google Scholar 

  10. Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of interactions of soil fauna with plant roots. Plant Soil 321:213–233

    CAS  Article  Google Scholar 

  11. Casarin V, Plassard C, Hinsinger P, Arvieu J-C (2004) Quantification of ectomycorrhizal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–195

    Article  Google Scholar 

  12. Chen X, Liu M, Hu F, Mao X, Li H (2007) Contributions of soil microfauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecol Sin 27:3132–3143

    CAS  Article  Google Scholar 

  13. Cheng Y, Jiang Y, Griffiths BS, Li D, Hu F, Li H (2011) Stimulatory effects of bacterial-feeding nematodes on plant growth vary with nematodes species. Nematology 13:369–372

    Article  Google Scholar 

  14. Clarholm M (2005) Soil protozoa: an under-researched microbial group gaining momentum. Soil Biol Biochem 37:811–817

    CAS  Article  Google Scholar 

  15. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  16. Debaud JC, Gay G (1987) In vitro fruiting under controlled conditions of the ectomycorrhizal fungus Hebeloma cylindrosporum associated with Pinus pinaster. New Phytol 105:429–435

    Article  Google Scholar 

  17. Dickie IA, Yeates GW, St John MG et al (2011) Ecosystem service and biodiversity trade-offs in two woody successions. J Appl Ecol 48:926–934

    Article  Google Scholar 

  18. Ettema CH, Bongers T (1993) Characterization of nematode colonization and succession in disturbed soil using the maturity index. Biol Fertil Soils 16:79–85

    Article  Google Scholar 

  19. Fu SL, Ferris H, Brown D, Plant R (2005) Does the positive feedback effect the nematodes on the biomass and activity of their bacteria prey vary with nematodes species and population size? Soil Biol Biochem 37:1979–1987

    CAS  Article  Google Scholar 

  20. Findenegg GR, Nelemans JA (1993) The effect of phytase on the availability of phosphorus from myo-inositol hexaphosphate (phytate) for maize roots. Plant and Soil 154:189–196

    CAS  Article  Google Scholar 

  21. George TS, Richardson AE, Smith JB, Hadobas PA, Simpson RJ (2005) Limitations to the potential of transgenic Trifolium subterraneum L. plants that exude phytase, when grown in soils with a range of organic phosphorus content. Plant and Soil 278:263–274

    CAS  Article  Google Scholar 

  22. Greiner R, Farouk A, Alminger ML, Carlsson NG (2002) The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate-degrading enzymes of different Bacillus spp. Can J Microbiol 48:986–997

    PubMed  CAS  Article  Google Scholar 

  23. Harrison AF (1987) Soil organic phosphorus: a review of world literature. CAB Int, Wallingford

    Google Scholar 

  24. Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant and Soil 220:165–174

    CAS  Article  Google Scholar 

  25. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237:173–195

    CAS  Article  Google Scholar 

  26. Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Article  Google Scholar 

  27. Irshad U, Villenave C, Brauman A, Plassard C (2011) Grazing by nematodes on rhizosphere bacteria enhances nitrate and phosphorus availability to Pinus pinaster seedlings. Soil Biol Biochem 43:2121–2126

    CAS  Article  Google Scholar 

  28. Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth: non-nutritional effects and interaction with mycorrhizas. Biol Fertil Soils 20:263–269

    Article  Google Scholar 

  29. Jorquera MA, Hernández MT, Rengel Z, Marschner P, Mora MDLL (2008a) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 4:1025–1034

    Article  Google Scholar 

  30. Jorquera M, Martinez O, Maruyama F, Marschner P, Mora MDLL (2008b) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23:182–191

    PubMed  Article  Google Scholar 

  31. Kuikman PJ, Jansen AG, Van Veen JA (1991) 15N-Nitrogen mineralization from bacteria by protozoan grazing at different soil moisture regimes. Soil Biol Biochem 23:193–200

    CAS  Article  Google Scholar 

  32. Louche J, Ali MA, Cloutier-Hurteau B, Sauvage FX, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73:323–335

    PubMed  CAS  Google Scholar 

  33. Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis—model and research methods. Soil Biol Biochem 43:883–894

    CAS  Article  Google Scholar 

  34. Mousain D, Bousquet N, Polard C (1988) Comparison of phosphatase activities in ectomycorrhizal homobasidiomycetes cultured in vitro. Eur J Forest Pathol 18:299–309

    CAS  Article  Google Scholar 

  35. Mullaney EJ, Ullah AHJ (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184

    PubMed  CAS  Article  Google Scholar 

  36. Mullaney EJ, Ullah AHJ (2007) Phytases: attributes, catalytic mechanisms and applications. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB Int, Wallingford, pp 97–110

    Chapter  Google Scholar 

  37. Ohno T, Zibilske L (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895

    CAS  Article  Google Scholar 

  38. Peperzak P, Caldwell AG, Hunziker RR, Black CA (1959) Phosphorus fractions in manures. Soil Sci 87:293–302

    CAS  Article  Google Scholar 

  39. Perez-Moreno J, Read DJ (2001) Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network. Plant Cell Environ 24:1219–1226

    CAS  Article  Google Scholar 

  40. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    PubMed  CAS  Article  Google Scholar 

  41. Raboy V (2007) Seed phosphorus and the development of low-phytate crops. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB Int, Wallingford, pp 111–132

    Chapter  Google Scholar 

  42. Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    PubMed  CAS  Article  Google Scholar 

  43. Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum I.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405

    CAS  Article  Google Scholar 

  44. Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    PubMed  CAS  Article  Google Scholar 

  45. Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant and Soil 229(1):47–56

    CAS  Article  Google Scholar 

  46. Richardson AE, George TS, Jakobsen Y, Simpson RJ (2007) Plant utilization of inositol phosphates. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB Int, Wallingford, pp 242–260

    Chapter  Google Scholar 

  47. Smith SE, Jakobsen Y, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    PubMed  CAS  Article  Google Scholar 

  48. Tatry MV, Kassis EE, Lambilliotte R, Corratge C, van Aarle I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C (2009) Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindropsporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J 57:1092–1102

    PubMed  CAS  Article  Google Scholar 

  49. Tzvetkov MV, Liebl W (2008) Phytate utilization by genetically engineered lysine-producing Corynebacterium glutamicum. J Biotechnol 134:211–217

    PubMed  CAS  Article  Google Scholar 

  50. Turner B (2007) Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB Int, Wallingford, pp 186–206

    Chapter  Google Scholar 

  51. Turner BL, Leytem AB (2004) Phosphorus compounds in sequential extracts of animal manures: chemical speciation and a novel fractionation procedure. Environ Sci Tech 38:6101–6108

    CAS  Article  Google Scholar 

  52. Turner BL, Paphazy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B 357:449–469

    CAS  Article  Google Scholar 

  53. Villenave C, Ekschmitt K, Nazaret S, Bongers T (2004) Interactions between nematodes and microbial communities in a tropical soil following manipulation of the soil food web. Soil Biol Biochem 36:2033–2043

    CAS  Article  Google Scholar 

  54. Vignon C, Plassard C, Mousain D, Salsac L (1986) Assay of fungal chitin and estimation of mycorrhizal infection. Physiologie Vegetale 24:201–207

    CAS  Google Scholar 

  55. Yip W, Wang L, Cheng C, Wu W, Lung S, Lim BL (2003) The introduction of a phytases gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem Biophys Res Commun 310:1148–1154

    PubMed  CAS  Article  Google Scholar 

  56. Zuckerman BM, Brzeski MW, Deubert KH (1967) English translation of selected east European papers in nematology. Univ Massachusetts, East Wareham

    Google Scholar 

Download references

Acknowledgement

Usman Irshad was supported by a grant from the Higher Education Commission of Pakistan. We thank Dr Maria Sels for English reading and corrections.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claude Plassard.

Additional information

Responsible Editor: Megan H. Ryan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material

(DOC 30 kb)

Fig. S1

(DOC 37 kb)

Table S1

(DOC 38 kb)

Table S2

(DOC 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Irshad, U., Brauman, A., Villenave, C. et al. Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster . Plant Soil 358, 155–168 (2012). https://doi.org/10.1007/s11104-012-1161-3

Download citation

Keywords

  • Phytase
  • Ectomycorrhiza
  • Root architecture
  • Bacillus subtilis
  • Hebeloma cylindrosporum
  • Rhabditidae
  • Cephalobidae