Advertisement

Plant and Soil

, Volume 357, Issue 1–2, pp 215–226 | Cite as

Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils

  • Nuria Bonilla
  • Francisco M. CazorlaEmail author
  • Maira Martínez-Alonso
  • José M. Hermoso
  • Jorge J. González-Fernández
  • Núria Gaju
  • Blanca B. Landa
  • Antonio de Vicente
Regular Article

Abstract

Background and aims

The avocado-producing area of southern Spain includes conventional orchards and organic orchards that use different organic amendments. To gain insight into the effects of these amendments, physicochemical properties and microbial communities of the soil were analysed in a representative set of commercial and experimental orchards.

Methods

The population size of several groups of culturable microorganisms was determined by plating on different selective media. Bacterial community structure was studied by denaturing gradient gel electrophoresis (DGGE)

Results

Commercial composts showed the largest effects, especially the animal compost, enhancing the population sizes of some microbial groups and affecting bacterial community structure in superficial and deep soil layers. Moreover, animal and vegetal compost, manure and blood meal addition are related to high bacterial diversity in the superficial soil layer.

Conclusions

All of the organic amendments used in this study affect soil properties in one or more of the characteristics that were analysed. Culturable microbial population data revealed the most evident effects of some of the organic treatments. However, molecular analysis of soil bacterial communities by DGGE allowed the detection of the influence of all of the analysed amendments on bacterial community composition. This effect was stronger in the superficial layer of the avocado soil.

Keywords

Organic crop Community structure Microbial diversity Manure Compost Almond shells DGGE 

Notes

Acknowledgements

We want to thank David Sarmiento from SAT “TROPS” for assistance in sampling design and sample collection. We would also like to thank the owners of the orchards in which the study was conducted, the members of our laboratory for their inestimable help with the microbial analysis and Juan A. Torés for his assistance during various parts of the project. We are especially grateful to Jose M. Farré for his helpful ideas and discussion, which were absolutely essential for this project, and for allowing us to include his experimental orchards in the study. This work was supported by Plan Estratégico BIOÁNDALUS, CICE-Junta de Andalucía (BIOÁNDALUS 08/1/l1.1), and by Plan Nacional I+D+I from Ministerio de Ciencia e Innovación (MCI) (AGL08-05453-C02-01), co-financed by FEDER funds (EU). N. Bonilla was supported by a PhD fellowship from the FPU program of MCI.

Electronic supplementary material

Supplementary material

11104_2012_1155_MOESM1_ESM.doc (48 kb)
Table S1 Physicochemical properties of the soils. Mean values of four replicate samples analysis and standard deviations in brackets. (DOC 48 kb)
11104_2012_1155_MOESM2_ESM.eps (1.2 mb)
Fig. S1 Effect of organic treatments on culturable microbial populations of the soil in the three analysed sampling campaigns. Statistical analyses were performed separately for superficial soil (black bars) and deep soil (white bars). Only significant differences between treated and control soil of the same orchard were considered (TP was compared with SAR). Significant differences (P < 0.05) are marked with *. AL, “La Alegría” with almond shells; ALC, “La Alegría” control; MY, “La Mayora” with almond shells; MYC, “La Mayora” control; BRA, “Barranco” with animal compost; BRV, “Barranco” with vegetal compost; BRC, “Barranco” control; TP, “Tío Palomo” commercial orchard with manure and blood meal; SAR, “Sarmiento” conventional commercial orchard (EPS 1204 kb)
11104_2012_1155_MOESM3_ESM.eps (7.8 mb)
Fig. S2 Location of the avocado orchards included in this study. 1, “Sarmiento”; 2, “Tío Palomo”; 3, “La Alegría”; 4, “Barranco”; 5, “La Mayora” (EPS 7971 kb)
11104_2012_1155_MOESM4_ESM.eps (1.9 mb)
Fig. S3 Effect of the amendment with almond shells on bacterial community composition of the superficial soil. Native image of the DGGE gel. AL, “La Alegría” with almond shells; ALC, “La Alegría” control; MY, “La Mayora” with almond shells; MYC, “La Mayora” control (EPS 1923 kb)
11104_2012_1155_MOESM5_ESM.eps (1.7 mb)
Fig. S4 Effect of the amendment with almond shells on bacterial community composition of the deep soil. Native image of the DGGE gel. AL, “La Alegría” with almond shells; ALC, “La Alegría” control; MY, “La Mayora” with almond shells; MYC, “La Mayora” control (EPS 1739 kb)
11104_2012_1155_MOESM6_ESM.eps (1.7 mb)
Fig. S5 Effect of the amendment with animal and vegetal compost on bacterial community composition of the superficial soil. Native image of the DGGE gel. BRA, “Barranco” with animal compost; BRV, “Barranco” with vegetal compost; BRC, “Barranco” control (EPS 1696 kb)
11104_2012_1155_MOESM7_ESM.eps (2 mb)
Fig. S6 Effect of the amendment with animal and vegetal compost on bacterial community composition of the deep soil. Native image of the DGGE gel. BRA, “Barranco” with animal compost; BRV, “Barranco” with vegetal compost; BRC, “Barranco” control (EPS 2066 kb)
11104_2012_1155_MOESM8_ESM.eps (1.7 mb)
Fig. S7 Bacterial DGGE profiles from superficial soil of organic and conventional avocado orchards. TP, “Tío Palomo” commercial orchard with manure and blood meal; SAR, “Sarmiento” conventional commercial orchard (EPS 1730 kb)
11104_2012_1155_MOESM9_ESM.eps (1021 kb)
Fig. S8 Bacterial DGGE profiles from deep soil of organic and conventional avocado orchards. TP, “Tío Palomo” commercial orchard with manure and blood meal; SAR, “Sarmiento” conventional commercial orchard (EPS 1020 kb)

References

  1. Alabouvette C, Backhouse D, Steinberg C, Donovan NJ, Edel-Hermann V, Burgess LW (2004) Microbial diversity in soil: effects on crop health. In: Schjonning P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. CAB International, Wallingford, pp 121–138CrossRefGoogle Scholar
  2. Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Till Res 72(2):169–180. doi: 10.1016/s0167-1987(03)00086-2 CrossRefGoogle Scholar
  3. Bausenwein U, Gattinger A, Langer U, Embacher A, Hartmann HP, Sommer M, Munch JC, Schloter M (2008) Exploring soil microbial communities and soil organic matter: variability and interactions in arable soils under minimum tillage practice. Appl Soil Ecol 40(1):67–77. doi: 10.1016/j.apsoil.2008.03.006 CrossRefGoogle Scholar
  4. Bonilla N (2009) Microbiological and molecular methods to describe soil microbial diversity. Bachelor Thesis, University of Málaga, Malaga, SpainGoogle Scholar
  5. Bonilla N, Torés JA, Hermoso JM, González J, Cazorla FM, de Vicente A (2009) Biological control of avocado root rots by suppressive organic amendments. In: Elad Y, Maurhofer M, Keel C, Gessler C, Duffy B (eds) IOBC/wprs Bulletin: biological control of fungal and bacterial plant pathogens, Interlaken, Switzerland, 2009. pp 231–234Google Scholar
  6. Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121(3):233–244. doi: 10.1016/j.agee.2006.12.013 CrossRefGoogle Scholar
  7. Ceja-Navarro J, Rivera F, Patiño-Zúñiga L, Govaerts B, Marsch R, Vila-Sanjurjo A, Dendooven L (2010) Molecular characterization of soil bacterial communities in contrasting zero tillage systems. Plant Soil 329(1):127–137. doi: 10.1007/s11104-009-0140-9 CrossRefGoogle Scholar
  8. Dini-Andreote F, Andreote F, Costa R, Taketani R, van Elsas J, Araújo W (2010) Bacterial soil community in a Brazilian sugarcane field. Plant Soil 336(1):337–349. doi: 10.1007/s11104-010-0486-z CrossRefGoogle Scholar
  9. Eghball B (2002) Soil properties as influenced by phosphorus- and nitrogen-based manure and compost ppplications. Agron J 94(1):128–135. doi: 10.2134/agronj2002.1280 CrossRefGoogle Scholar
  10. Fonte SJ, Yeboah E, Ofori P, Quansah GW, Vanlauwe B, Six J (2009) Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Sci Soc Am J 73(3):961–966. doi: 10.2136/sssaj2008.0204 CrossRefGoogle Scholar
  11. Galán V, Farré JM (2005) Tropical and subtropical fruits in Spain. Acta Horticult (ISHS) 694:259–264Google Scholar
  12. Gomiero T, Pimentel D, Paoletti MG (2011) Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit Rev Plant Sci 30(1–2):95–124. doi: 10.1080/07352689.2011.554355 CrossRefGoogle Scholar
  13. Hermoso JM, Soria JT, Farré JM Soil management of avocados: effects on growth and cropping In: Proceedings of The World Avocado Congress III, Israel, 1995, pp 255–258Google Scholar
  14. Hermoso JM, Torres MD, Farré JM (2007) Conventional and ecological avocado production. In: Proceedings of The World Avocado Congress, Viña Del Mar, ChileGoogle Scholar
  15. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58(2):169–188. doi: 10.1016/j.mimet.2004.04.006 PubMedCrossRefGoogle Scholar
  16. Larkin RP, Honeycutt CW (2006) Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology 96:68–79. doi: 10.1094/PHYTO-96-0068 PubMedCrossRefGoogle Scholar
  17. Li-Xian Y, Guo-Liang L, Shi-Hua T, Gavin S, Zhao-Huan H (2007) Salinity of animal manure and potential risk of secondary soil salinization through successive manure application. Sci Total Environ 383(1–3):106–114. doi: 10.1016/j.scitotenv.2007.05.027 PubMedCrossRefGoogle Scholar
  18. Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697. doi: 10.1126/science.1071148 CrossRefGoogle Scholar
  19. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10(6):1571–1581. doi: 10.1111/j.1462-2920.2008.01572.x PubMedCrossRefGoogle Scholar
  20. Meek B, Graham L, Donovan T (1982) Long-term effects of manure on soil Nitrogen, Phosphorus, Potassium, Sodium, organic matter, and water infiltration rate. Soil Sci Soc Am J 46(5):1014–1019. doi: 10.2136/sssaj1982.03615995004600050025x CrossRefGoogle Scholar
  21. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual, vol 1. (2nd edn). Kluwer Academics Publishers, Dordrecht, The Netherlands, pp 743–770Google Scholar
  22. Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC (2001) Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem 33(7–8):1011–1019. doi: 10.1016/s0038-0717(01)00004-9 CrossRefGoogle Scholar
  23. Pérez-Jiménez RM (2008) Significant avocado diseases caused by fungi and oomycetes. Eur J Plant Sci Biotechnol 2(1):1–24Google Scholar
  24. Powlson DS, Brookes PC, Whitmore AP, Goulding KWT, Hopkins DW (2011) Soil organic matters. Eur J Soil Sci 62(1):1–4. doi: 10.1111/j.1365-2389.2010.01338.x CrossRefGoogle Scholar
  25. Riegel C, Noe JP (2000) Chicken litter soil amendment effects on soilborne microbes and Meloidogyne incognita on cotton. Plant Dis 84(12):1275–1281. doi: 10.1094/pdis.2000.84.12.1275 CrossRefGoogle Scholar
  26. Roy S, Arunachalam K, Dutta BK, Arunachalam A (2010) Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Appl Soil Ecol 45(2):78–84. doi: 10.1016/j.apsoil.2010.02.004 CrossRefGoogle Scholar
  27. Saison C, Degrange V, Oliver R, Millard P, Commeaux C, Montange D, Le Roux X (2006) Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. Environ Microbiol 8(2):247–257. doi: 10.1111/j.1462-2920.2005.00892.x PubMedCrossRefGoogle Scholar
  28. Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35(1):79–93. doi: 10.1016/j.apsoil.2006.05.001 CrossRefGoogle Scholar
  29. Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl Environ Microbiol 70(10):5868–5874. doi: 10.1128/aem.70.10.5868-5874.2004 PubMedCrossRefGoogle Scholar
  30. van Elsas JD, Jansson JK, Trevors JT (2007) Modern soil microbiology II, vol 2nd, 2nd edn. CRC, Boca RatonGoogle Scholar
  31. Wallis PD, Haynes RJ, Hunter CH, Morris CD (2010) Effect of land use and management on soil bacterial biodiversity as measured by PCR-DGGE. Appl Soil Ecol 46(1):147–150. doi: 10.1016/j.apsoil.2010.06.006 CrossRefGoogle Scholar
  32. Will C, Thurmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F, Daniel R (2010) Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 76(20):6751–6759. doi: 10.1128/aem.01063-10 PubMedCrossRefGoogle Scholar
  33. Wu T, Chellemi DO, Martin KJ, Graham JH, Rosskopf EN (2007) Discriminating the effects of agricultural land management practices on soil fungal communities. Soil Biol Biochem 39(5):1139–1155. doi: 10.1016/j.soilbio.2006.11.024 CrossRefGoogle Scholar
  34. Yan X, Gong W (2010) The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration—results of a 19-year experiment. Plant Soil 331(1):471–480. doi: 10.1007/s11104-009-0268-7 CrossRefGoogle Scholar
  35. Yao S, Merwin IA, Bird GW, Abawi GS, Thies JE (2005) Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition. Plant Soil 271(1):377–389. doi: 10.1007/s11104-004-3610-0 CrossRefGoogle Scholar
  36. Ye R, Wright AL (2010) Multivariate analysis of chemical and microbial properties in histosols as influenced by land-use types. Soil Till Res 110(1):94–100. doi: 10.1016/j.still.2010.06.013 CrossRefGoogle Scholar
  37. Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326(1):511–522. doi: 10.1007/s11104-009-9988-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nuria Bonilla
    • 1
  • Francisco M. Cazorla
    • 1
    Email author
  • Maira Martínez-Alonso
    • 2
  • José M. Hermoso
    • 3
  • Jorge J. González-Fernández
    • 3
  • Núria Gaju
    • 2
  • Blanca B. Landa
    • 4
  • Antonio de Vicente
    • 1
  1. 1.Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de CienciasUniversidad de MálagaMálagaSpain
  2. 2.Departamento de Genética y Microbiología, Facultad de BiocienciasUniversidad Autónoma de BarcelonaBellaterraSpain
  3. 3.IHSM-UMA-CSIC, Departamento de Fruticultura, EE “La Mayora”Algarrobo costaSpain
  4. 4.Departamento de Protección de cultivos, Instituto de Agricultura Sostenible (IAS-CSIC) Finca Alameda del ObispoCórdobaSpain

Personalised recommendations