Skip to main content

Advertisement

Log in

Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Anaerobic soil disinfestation (ASD) has been shown to be an effective strategy for controlling soilborne plant pathogens and plant-parasitic nematodes in vegetable and other specialty crop production systems. Anaerobic soil disinfestation is based upon supplying labile carbon (C) to stimulate microbially-driven anaerobic soil conditions in moist soils covered with polyethylene mulch. To test the effectiveness of warm-season cover crops as C sources for ASD, a greenhouse study was conducted using a sandy field soil in which several warm-season legumes and grasses were grown and incorporated and compared to molasses-amended and no C source controls.

Methods

Greenhouse pots were irrigated to fill soil porosity and covered with a transparent polyethylene mulch to initiate a 3-week ASD treatment prior to planting tomatoes. Soilborne plant pathogen inoculum packets, yellow nutsedge (Cyperus esculentus L.) tubers, and Southern root-knot nematode (Meloidogyne incognita (Kofoid & White) Chitwood; M.i.) eggs and juveniles were introduced at cover crop incorporation.

Results

In nearly all cases, ASD treatment utilizing cover crops as a C source resulted in soil anaerobicity values that were equal to the molasses-amended fallow control and greater than the no C source fallow control. In trial 1, Fusarium oxysporum Schlechtend.:Fr. (F.o.) survival was reduced by more than 97% in all C source treatments compared to the no C source control but there was no effect of C source in Trial 2. Carbon source treatments were inconsistent in their effects on survival of Sclerotium rolfsii Sacc. (S.r). In general, the number of M.i. extracted from tomato root tissue and root gall ratings were low in all treatments with cover crop C source, molasses C source, or composted poultry litter. Germination of yellow nutsedge tubers was highest in the no C source control (76%), lowest in the molasses control (31%), and intermediate from cover crop treatments (49% to 61%).

Conclusions

Warm-season cover crops have potential to serve as a C source for ASD in vegetable and other crop production systems, but more work is needed to improve consistency and further elucidate mechanisms of control of soilborne plant pathogens and weeds during ASD treatment utilizing cover crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASD:

Anaerobic soil disinfestation

CPL:

Composted poultry litter

CEh:

Critical redox potential

F.o. :

Fusarium oxysporum

MeBr:

Methyl bromide

M.i. :

Meloidogyne incognita

S.r. :

Sclerotium rolfsii

References

  • Ajwa HA, Tabatabai MA (1994) Decomposition of different organic materials in soils. Biol Fertil Soils 18:175–182. doi:10.1007/bf00647664

    Article  Google Scholar 

  • Barker KR (1985) Nematode extraction techniques. In: Barker KR, Carter CC, Sasser J (eds) An advanced treatise on Meloidogyne, vol II, methodology. North Carolina State University Graphics, Raleigh, NC, pp 19–35

    Google Scholar 

  • Bernal MP, Sánchez-Monedero MA, Paredes C, Roig A (1998) Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agric Ecosyst Environ 69:175–189. doi:10.1016/s0167-8809(98)00106-6

    Article  CAS  Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopatholoy 90:253–259. doi:10.1094/phyto.2000.90.3.253

    Article  CAS  Google Scholar 

  • Bridge J, Page SLJ (1980) Estimation of root-knot infestation levels in roots using a rating chart. Trop Pest Manag 26:296–298. doi:10.1080/09670878009414416

    Article  Google Scholar 

  • Chase CA, Sinclair TR, Chellemi DO, Olson SM, Gilreath JP, Locascio SJ (1999) Heat-retentive films for increasing soil temperatures during solarization in a humid, cloudy environment. HortSci 34:1085–1089

    Google Scholar 

  • Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathology 40:221–249. doi:10.1146/annurev.phyto.40.032602.130045

    Article  CAS  Google Scholar 

  • Coelho L, Mitchell DJ, Chellemi DO (2000) Thermal inactivation of Phytophthora nicotianae. Phytopathology 90:1089–1097. doi:10.1094/phyto.2000.90.10.1089

    Article  PubMed  CAS  Google Scholar 

  • Creamer NG, Baldwin KR (2000) An evaluation of summer cover crops for use in vegetable production systems in North Carolina. HortSci 35:300–603

    Google Scholar 

  • Crooke WM, Simpson WE (1971) Determination of ammonium on Kjeldahl digests of crops by an automated procedure. J Sci Food Agric 22:9–10. doi:10.1002/jsfa.2740220104

    Article  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2009) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Tech 15:813–825. doi:10.1614/0890-037x(2001)015[0813:moalop]2.0.co;2

    Article  Google Scholar 

  • Davis JR, Huisman OC, Westermann DT, Hafez SL, Everson DO, Sorensen LH, Schneider AT (1996) Effects of green manures on Verticillium wilt of potato. Phytopathology 86:444–453. doi:10.1094/phyto-86-444

    Article  Google Scholar 

  • Duniway JM (2002) Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92:1337–1343. doi:10.1094/phyto.2002.92.12.1337

    Article  PubMed  CAS  Google Scholar 

  • Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: importance, field measurements, and observations. Adv Agron 94:1–54. doi:10.1016/s0065-2113(06)94001-2

    Article  CAS  Google Scholar 

  • Goud J-K C, Termorshuizen AJ, Blok WJ, van Bruggen AHC (2004) Long-term effect of biological soil disinfestation on verticillium wilt. Plant Dis 88:688–694. doi:10.1094/pdis.2004.88.7.688

    Article  Google Scholar 

  • Honeycutt CW, Potaro LJ, Avila KL, Halteman WA (1993) Residue quality, loading rate and soil temperature relations with hairy vetch (Vicia villosa Roth) residue carbon, nitrogen and phosphorus mineralization. Biol Agric Hort 9:181–199

    Article  Google Scholar 

  • Kadir JB, Charudattan C, Stall WM, Bewick TA (1999) Effect of Dactylaria higginsii on interference of Cyperus rotundus with L. esculentum. Weed Sci 47:682–686

    CAS  Google Scholar 

  • Katase M, Kubo C, Ushio S, Ootsuka E, Takeuchi T, Mizukubo T (2009) Nematicidal activity of volatile fatty acids generated from wheat bran in reductive soil disinfestation. Nematol Res 39:53–62. doi:10.3725/jjn.39.53

    Article  Google Scholar 

  • Komada H (1975) Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev Plant Protect Res 8:114–125

    Google Scholar 

  • Lamers JG, Runia WT, Molendijk LPG, Bleeker PO (2010) Perspectives of anaerobic soil disinfestation. Acta Hort (ISHS) 883:277–283

    Google Scholar 

  • Larkin RP, Honeycutt CW, Griffin TS, Olanya OM, Halloran JM, He Z (2011) Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 101:58–67. doi:10.1094/phyto-04-10-0100

    Article  PubMed  Google Scholar 

  • Li Y, Hanlon EA, Klassen W, Wang Q, Olczyk T, Ezenwa IV (2006) Cover crop benefits for South Florida commercial vegetable producers. University of Florida: IFAS Extension

  • Marstorp H (1996) Influence of soluble carbohydrates, free amino acids, and protein content on the decomposition of Lolium multiflorum shoots. Biol Fertil Soils 21:257–263. doi:10.1007/bf00334901

    Article  CAS  Google Scholar 

  • McBride RG, Mikkelsen RL, Barker KR (2000) The role of low molecular weight organic acids from decomposing rye in inhibiting root-knot nematode populations in soil. Appl Soil Ecol 15:243–251. doi:10.1016/s0929-1393(00)00062-7

    Article  Google Scholar 

  • McSorley R (1999) Host suitability of potential cover crops for root-knot nematodes. J Nematol 31:69–623

    Google Scholar 

  • McSorley R, Dickson DW, de Brito JA, Hochmuth RC (1994) Tropical rotation crops influence nematode densities and vegetable yields. J Nematol 26:308–314

    PubMed  CAS  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of the Mehlich 2 extractant. Comm Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Mengel K (2007) Potassium. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Messiha N, van Diepeningen A, Wenneker M, van Beuningen A, Janse J, Coenen T, Termorshuizen A, van Bruggen A, Blok W (2007) Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 117:403–415. doi:10.1007/s10658-007-9109-9

    Article  Google Scholar 

  • Momma N (2008) Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn Agr Res Q 42:7–12

    CAS  Google Scholar 

  • Momma N, Yamamoto K, Simandi P, Shishido M (2006) Role of organic acids in the mechanisms of biological soil disinfestation (BSD). J Gen Plant Pathol 72:247–252. doi:10.1007/s10327-006-0274-z

    Article  CAS  Google Scholar 

  • Mulvaney RL (1996) Nitrogen–inorganic forms. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis. Part 3, chemical methods. ASA, CSSA, and SSSA, Madison, pp 1123–1184

    Google Scholar 

  • Muramoto J, Shennan C, Fitzgerald A, Koike ST, Bolda M, Daugovish O, Rosskopf EN, Kokalis-Burelle N, Butler DM (2008) Effect of anaerobic soil disinfestation on weed seed germination. In Proceedings of the annual international research conference on methyl bromide alternatives and emissions reductions. Orlando, FL, pp 11–14 Nov 2008

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments–a review. Appl Soil Ecol 44:101–115. doi:10.1016/j.apsoil.2009.11.003

    Article  Google Scholar 

  • Oka Y, Shapira N, Fine P (2007) Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Prot 26:1556–1565. doi:10.1016/j.cropro.2007.01.003

    Article  Google Scholar 

  • Punja ZK, Jenkins SF (1984) Influence of medium composition on mycelial growth and oxalic acid production in Sclerotium rolfsii. Mycologia 76:947–950

    Article  CAS  Google Scholar 

  • Rabenhorst MC, Castenson KL (2005) Temperature effects on iron reduction in a hydric soil. Soil Sci 170:734–742

    Article  CAS  Google Scholar 

  • Ranells NN, Wagger MG (1997) Grass-legume bicultures as winter annual cover crops. Agron J 89:659–665

    Article  Google Scholar 

  • Rodriguez-Kabana R, Beute MK, Backman PA (1980) A method for estimating numbers of viable sclerotia of Sclerotium rolfsii in soil. Phytopathology 70:917–919

    Article  Google Scholar 

  • Rodriguez-Kabana R, Morgan-Jones G, Chet I (1987) Biological control of nematodes: soil amendments and microbial antagonists. Plant Soil 100:237–247. doi:10.1007/bf02370944

    Article  Google Scholar 

  • Rosskopf EN, Chellemi DO, Kokalis-Burelle N, Church GT (2005) Alternatives to methyl bromide: a Florida perspective. Plant Health Progr. doi:10.1094/php-2005-1027-01-rv

  • Ruffo ML, Bollero GA (2003) Residue decomposition and prediction of carbon and nitrogen release rates based on biochemical fractions using principal-component regression. Agron J 95:1034–1040. doi:10.2134/agronj2003.1034

    Article  CAS  Google Scholar 

  • Institute SAS (2007) SAS/STAT user’s guide: statistics. SAS Inst, Cary

    Google Scholar 

  • Shennan C, Muramoto J, Koike ST, Daugovish O (2009) Optimizing anaerobic soil disinfestation for non-fumigated strawberry production in California. In Proceedings of the annual international research conference on methyl bromide alternatives and emissions reductions. San Diego, CA, 29 Oct-1 Nov 2009

  • Shinmura A, Sakamoto N, Abe H (1999) Control of Fusarium root rot of Welsh onion by soil reduction (abstract in Japanese). Jpn J Phytopathol 65:352–353

    Google Scholar 

  • Snapp SS, Swinton SM, Labarta R, Mutch D, Black JR, Leep R, Nyiraneza J, O’Neil K (2005) Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron J 97:322–332. doi:10.2134/agronj2005.0322

    Google Scholar 

  • Stapleton JJ (2000) Soil solarization in various agricultural production systems. Crop Prot 19:837–841. doi:10.1016/s0261-2194(00)00111-3

    Article  Google Scholar 

  • Stapleton JJ, Summers C, Mitchell J, Prather T (2010) Deleterious activity of cultivated grasses (Poaceae) and residues on soilborne fungal, nematode and weed pests. Phytoparasitica 38:61–69. doi:10.1007/s12600-009-0070-3

    Article  Google Scholar 

  • Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA (2009) Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Funct Ecol 23:627–636. doi:10.1111/j.1365-2435.2008.01515.x

    Article  Google Scholar 

  • Tenuta M, Lazarovits G (2002) Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology 92:255–264. doi:10.1094/phyto.2002.92.3.255

    Article  PubMed  CAS  Google Scholar 

  • Ventura WB, Yoshida T (1977) Ammonia volatilization from a flooded tropical soil. Plant Soil 46:521–531. doi:10.1007/bf00015911

    Article  CAS  Google Scholar 

  • USDA-NRCS (2010) Field indicators of hydric soils in the United States, Version 7.0. In: Vasilas LM, Hurt GW, Noble CV (eds) USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils

  • U.S. EPA Method 3052 (1997) Microwave assisted acid digestion of siliceous and organically based matrices, test methods for evaluating solid waste, physical/chemical methods. EPA Publ. SW-846, third edition, as amended by updates I, II, III, and IIIB finalized in the Federal Register on June 13, 1997

  • U.S. EPA Method 6010B (1997) Inductively coupled plasma–atomic emission spectrometry, Test methods for evaluating solid waste, physical/chemical methods. EPA Publ. SW-846, third edition, as amended by updates I, II, III, and IIIB finalized in the Federal Register on June 13, 1997

  • Wang K-H, Sipes BH, Schmitt DP (2002) Crotalaria as a cover crop for nematode management: a review. Nematropica 32:35–57

    CAS  Google Scholar 

  • Wiggins BE, Kinkel LL (2005) Green manures and crop sequences influence alfalfa root rot and pathogen inhibitory activity among soil-borne streptomycetes. Plant Soil 268:271–283. doi:10.1007/s11104-004-0300-x

    Article  CAS  Google Scholar 

  • Yossen V, Zumelzu G, Gasoni L, Kobayashi K (2008) Effect of soil reductive sterilisation on Fusarium wilt in greenhouse carnation in Cordoba, Argentina. Australasian Plant Path 37:520–522. doi:10.1071/ap08039

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge technical assistance provided by Kate Rotindo, Bernardette Stange, Pragna Patel, Melissa Sallstrom, Veronica Abel, John Mulvaney, Amanda Rinehart, Jackie Markle, Chris Lasser, Marcus Martinez, Loretta Myers, Jeff Smith, and Lynn Faulkner. The authors appreciate comments on the manuscript provided by Dr. Bob McSorley and Dr. T. Greg McCollum. Partial funding provided by the United States Department of Agriculture-Cooperative State Research, Education, and Extension Service (USDA-CSREES), Methyl Bromide Transitions Grant Agreement No. 2007-51102-03854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Butler.

Additional information

Responsible Editor: Peter A. H. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, D.M., Rosskopf, E.N., Kokalis-Burelle, N. et al. Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 355, 149–165 (2012). https://doi.org/10.1007/s11104-011-1088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1088-0

Keywords

Navigation