Skip to main content
Log in

Resistance mechanism to acetyl coenzyme A carboxylase inhibiting herbicides in Phalaris paradoxa collected in Mexican wheat fields

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

In this study, we describe the molecular, physiological and agronomic aspects involved in the resistance to acetyl coenzyme A carboxylase inhibiting herbicides (ACCase) observed in one biotype of Phalaris paradoxa from Mexico.

Methods

Dose–response Assays: The herbicide rate inhibiting plant growth of each biotype by 50% with respect to the untreated control, ED50. Enzyme purification and ACCase assays to determine herbicide rate inhibiting the enzyme of each biotype by 50% with respect to the untreated control, I50. Absorption and Translocation Assays with [14C]diclofop-methyl. Metabolism of diclofop-methyl and its metabolites were identified by thin-layer chromatography. Study of target site resistance mechanism at enzyme and molecular levels.

Results

In this work, it has been studied the whole-plant response of Phalaris paradoxa biotypes from Mexico resistant (R) and susceptible (S) to ACCase-inhibiting herbicides: aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ), and the mechanism behind their resistance were studied. To analyse the resistance mechanism, the enzyme ACCase activity was investigated. Results from biochemical assays indicated a target-site resistance as the cause of reduced susceptibility to ACCase inhibitors. The absorption, translocation and metabolism were similar between R and S biotypes. A point mutation never described before was detected within the triplet of glycine at the amino acid position 2096 (referring to EMBL accession no. AJ310767) and resulted in the triplet of serine. This new mutation could explain the loss of affinity for the ACCase-inhibiting herbicides.

Conclusions

We found a new mutation, which had never been described before. This mutation was detected within the triplet of glycine at the amino acid position 2096. This new mutation confers cross-resistance to three different chemical groups of ACCase-inhibiting herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Christoffers MJ, Pederson SN (2007) Response of wild oat (Avena fatua) acetyl-coA carboxylase mutants to pinoxaden. Weed Sci. Soc. Am. Abstr, No, 256

    Google Scholar 

  • Collavo A, Panozzo S, Lucchesi G, Scarabel L, Sattin M (2011) Characterisation and management of Phalaris paradoxa resistant to ACCase-inhibitors. Crop Prot 30:293–299

    Article  CAS  Google Scholar 

  • Cruz-Hipolito H (2010) Gramíneas resistentes a herbicidas en Latinoamérica: Aspectos agronómicos, bioquímicos y moleculares. PhD Dissertation, University of Cordoba, Spain

  • Cruz-Hipolito H, Osuna MD, Domínguez-Valenzuela J, Espinoza N, De Prado R (2011) Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. J Agric Food Chem 59:7261–7267

    Article  PubMed  CAS  Google Scholar 

  • Dellow JJ, Milne BR (1986) Control of Phalaris paradoxa in wheat. Australian Weeds 3:22–23

    Google Scholar 

  • De Prado R, Franco AR (2004) Cross-resistance and herbicide metabolism in grass weeds in Europe: biochemical and physiological aspects. Weed Sci 52:115–120

    Article  Google Scholar 

  • De Prado JL, Osuna MD, Heredia A, De Prado R (2005) Lolium rigidum, a pool of resistance mechanisms to ACCase inhibitor herbicides J. Agric Food Chem 2005(53):2185–2191

    Article  Google Scholar 

  • Délye C, Calmès É, Matéjicek A (2002) SNP markers for black-grass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoAcarboxylase inhibiting herbicides. Theor Appl Genet 104:1114–1120

    Article  PubMed  Google Scholar 

  • Délye C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728–46

    Article  Google Scholar 

  • Délye C, Pernin F, Michel S (2011) ‘Universal’ PCR assays detecting mutations in acetyl-coenzyme A carboxylase or acetolactate synthase that endow herbicide resistance in grass weeds. Weed Res 51:353–362

    Article  Google Scholar 

  • Devine MD, Macisaac SA, Romano ML, Hall JC (1992) Investigation of the Mechanism of Diclofop Resistance in 2 Biotypes of Avena-fatua. Pestic Biochem Physiol 42:88–96

    Article  CAS  Google Scholar 

  • Devine MD, Hall JC, Romano ML, Marles MAS, Thomson LW, Shimabukuro RH (1993) Diclofop and fenoxaprop resistance in wild oat is associated with an altered effect on the plasma membrane electrogenic potential. Pestic Biochem Physiol 45:167–177

    Article  CAS  Google Scholar 

  • Devine MD, Shimabukuro RH (1994) Resistance to acetyl coenzyme A carboxylase inhibiting herbicides. In: Herbicide Resistance in Plants. Biology and Biochemistry; Powles SB, Holtum JAM, Eds.; Lewis Publishers: Boca Raton, FL, 1994; pp 141–169

  • Evenson KJ, Gronwald JW, Wyse DL (1997) Isoforms of acetyl-coenzyme A carboxylase in Lolium multiflorum. Plant Physiol Biochem 35:265–272

    CAS  Google Scholar 

  • Gherekhloo J, Rashed Mohassel MH, Mahalati MN, Zand E, Ghanbari A, Osuna MD, De Prado R (2011) Confirmed resistance to aryloxyphenoxypropionate herbicides in Phalaris minor populations in Iran. Weed Biol Manag 11:29–37

    Article  CAS  Google Scholar 

  • Gronwald JW, Eberlein CV, Betts KJ, Baerg RJ, Ehlke NJ, Wyse DL (1992) Mechanism of diclofop resistance in an Italian ryegrass (Lolium multiflorum Lam.). Pestic Biochem Physiol 44:126–139

    Article  CAS  Google Scholar 

  • Heap I (2011) The international survey of herbicide resistant weeds. Online. Internet. June 03. Available at www.weedscience.com

  • Heap IM, Murray BG, Loeppky HA, Morrison IN (1993) Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci 41:232–238

    Google Scholar 

  • Heap JW, Knight R (1982) A population of ryegrass tolerant to the herbicide diclofopmethyl. J Aust Ins Agric Sci 48:156–157

    Google Scholar 

  • Hochberg O, Sibony M, Rubin B (2009) The response of ACCase-resistant Phalaris paradoxa populations involves two different target site mutations. Weed Res 49:37–46

    Article  CAS  Google Scholar 

  • Hofer U, Muehlebach M, Hole S, Zoschke, A (2006) Pinoxaden for broad spectrum grass weed management in cereal crops. J Plant Dis Prot 20:989–995

    Google Scholar 

  • Holtum JAM, Häusler RE, Devine MD, Powles SB (1994) Recovery of transmembrane potentials in plants resistant to aryloxyphenoxypropanoate herbicides: a phenomenon awaiting explanation. Weed Sci 42:293–301

    CAS  Google Scholar 

  • Kaundun SS (2010) An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism(s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population. Pest Manag Sci 66:1249–1256

    Article  PubMed  CAS  Google Scholar 

  • Letouze A, Gasquez J (2003) Enhanced activity of several herbicide-degrading enzymes: a suggetsed mechanism responsible for multiple-resistance in blackgrass (Alopecurus myosuroides Huds.). Agronomie 23:601–608

    Article  CAS  Google Scholar 

  • Liebl R, Worsham AD (1987) Effect of chlorsulfuron on the movement and fate of diclofop in Italian ryegrass (Lolium multiflorum) and wheat (Triticum aestivum). Weed Sci 35:623–628

    CAS  Google Scholar 

  • Liu WJ, Harrison DK, Chalupska D, Gornicki P, O’Donnell CC, Adkins SW, Haselkorn R, Williams RR (2007) Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc Natl Acad Sci USA 104:3627–32

    Article  PubMed  CAS  Google Scholar 

  • Maneechote C, Preston C, Powles SB (1997) A diclofop-methyl-resistant Avena sterilis biotype with a herbicide-resistant acetyl-coenzyme A carboxylase and enhanced metabolism of diclofop-methyl. Pestic Sci 49(105):114

    Google Scholar 

  • Martin RJ, Felton WL (1993) Effect of crop rotation, tillage practice, and herbicides on the population dynamics of wild oats in wheat. Aust J Exp Agr 33:159–165

    Article  CAS  Google Scholar 

  • Medina CT (2000) Evaluación de herbicidas sobre alpiste (Phalaris spp.) resistente a herbicidas colectado en la región del Bajío. XXI Congreso Nacional de la Ciencia de la Maleza. Morelia, Mich., México

  • Menéndez J, De Prado R (1996) Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides. Pestic Biochem Physiol 56:123–133

    Article  Google Scholar 

  • Petit C, Bay G, Pernin F, Délye C (2010) Prevalence of cross or multiple resistance to the acetylcoenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass (Alopecurus myosuroides Huds.) in France. Pest Manag Sci 66:168–77

    PubMed  CAS  Google Scholar 

  • Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347

    Article  PubMed  CAS  Google Scholar 

  • Preston C, Tardif FJ, Christopher JT, Powles SB (1996) Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic Biochem Phys 54:123–134

    Article  CAS  Google Scholar 

  • Scarabel L, Panozzo S, Varotto S, Sattin M (2011) Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicides in pinoxaden target-site resistant Lolium spp. Pest Manag Sci 67:932–941

    Article  PubMed  CAS  Google Scholar 

  • Seefeldt SS, Fuerst EP, Gealy DR, Shukla A, Irzyk GP, Devine MD (1996) Mechanisms of resistance to diclofop of two wild-oat (Avena fatua) biotypes from the Williamette Valley of Oregon. Weed Sci 44(776):781

    Google Scholar 

  • Seefeldt S, Jensen J, Fuerst E (1995) Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218–227

    Google Scholar 

  • Shimabukuro RH, Hoffer BL (1991) Metabolism of diclofop-methyl in susceptible and resistant biotypes of Lolium rigidum. Pestic Biochem Physiol 39:251–260

    Article  CAS  Google Scholar 

  • Shimabukuro RH, Hoffer BL (1992) Effect of diclofop on the membrane potentials of herbicide-resistant and susceptible annual ryegrass root tips. Plant Physiol 98:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Shukla A, Dupont S, Devine MD (1997) Resistance to ACCase inhibitor herbicides in wild oat: evidence for target site-based resistance in two biotypes from Canada. Pestic Biochem Physiol 57:147–155

    Article  CAS  Google Scholar 

  • Walker S, Robinson G, Medd R, Taylor I (1999) Weed and crop management have a major impact on weed seed bank. In: Proceedings 12th Australian Weeds Conference, Hobart, Australia, 191–194

  • Walker SR, Medd RW, Robinson GR, Cullis BR (2002) Improved management of Avena ludoviciana and Phalaris paradoxa with more densely sown wheat and less herbicide. Weed Res 42:257–270

    Article  Google Scholar 

  • Weber E, Gut D (2004) Assessing the risk of potentially invasive plant species in central Europe. J Nat Conservat 12:171–179

    Article  Google Scholar 

  • White GM, Moss SR, Karp A (2005) Differences in the molecular basis of resistance to the cyclohexanedione herbicide sethoxydim in Lolium multiflorum. Weed Res 45:440–48

    Article  CAS  Google Scholar 

  • Yu Q, Collavo A, Zheng MQ, Owen M, Sattin M, Powles SB (2007) Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145:547–558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the technical help of Rafael A. Roldán-Gómez. Part of this work has been co-financed by MICINN (AGL2010-16774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Cruz-Hipolito.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz-Hipolito, H., Domínguez-Valenzuela, J.A., Osuna, M.D. et al. Resistance mechanism to acetyl coenzyme A carboxylase inhibiting herbicides in Phalaris paradoxa collected in Mexican wheat fields. Plant Soil 355, 121–130 (2012). https://doi.org/10.1007/s11104-011-1085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1085-3

Keywords

Navigation