Plant and Soil

, Volume 354, Issue 1–2, pp 81–95

Salicylic acid-altering Arabidopsis mutants response to salt stress

  • Lin Hao
  • Yan Zhao
  • Dandan Jin
  • Ling Zhang
  • Xiaohua Bi
  • Hongxing Chen
  • Qiang Xu
  • Chunyan Ma
  • Guangzhe Li
Regular Article

DOI: 10.1007/s11104-011-1046-x

Cite this article as:
Hao, L., Zhao, Y., Jin, D. et al. Plant Soil (2012) 354: 81. doi:10.1007/s11104-011-1046-x

Abstract

Aims

The role of salicylic acid (SA) in plant responses to salinity is still a matter of controversy. To address the effect of endogenous SA variation in level and signaling on plant responses to salinity, biochemical and physiological analyses were performed on SA-altering Arabidopsis mutants including snc1 with high level of SA, transgenic line nahG with low SA, npr1-1 with SA signaling blockage, snc1/nahG plants (expression of nahG in the snc1 background), as well as wild type plants.

Methods

Plants were cultured in 1 × Hoagland solution under controlled conditions. For salt exposure, NaCl at final concentrations of 100 mM, 200 mM, and 300 mM, respectively, was added to the culture solution after 25 d of seed germination. Except where mentioned, plant leaves were harvested after 14 d of salt stress, and used for physiological and chemical analyses.

Results

Salt stress caused all plants growth retardation with a dose-effect relationship relative to control. However, compared to wild type plants, a greater growth inhibition occurred in snc1, while a less inhibition was observed in nahG and npr1-1 plants, and a comparable extent was detected in snc1/nahG plants in which the SA level was near to that in wild type plants. The snc1 plants had lower net photosynthetic rate, variable to maximum fluorescence ratio, quantum efficiency of photosystem 2, reduced glutathione/oxidized glutathione ratio, proline levels, and higher malondiadehyde levels and electrolyte leakage rates as compared to wild type plants under salt stress. These values were effectively reversed by the expression of nahG gene in snc1 plants. The nahG and npr1-1 plants always exhibited more tolerance to salinity in above-mentioned indices than wild type plants. However, higher activities of superoxide dismutase and peroxidase in snc1 plants did not contribute to salt tolerance.

Conclusions

These data showed that SA deficit or signaling blockage in Arabidopsis plants was favorable to salt adaptation, while a high accumulation of SA potentiated salt-induced damage to Arabidopsis plants.

Keywords

Salt stress Salicylic acid Oxidative damage Photosynthesis Glutathione Proline 

Abbreviations

CAT

catalase

DW

dry weight

Fv/Fm

variable to maximum fluorescence ratio

FW

fresh weight

GSH

reduced glutathione

GSSG

oxidized glutathione

MDA

malondialdehyde

nahG

naphthalene hydroxylase G

npr1-1

nonexpressor of pathogenesis-relative gene 1

PN

net photosynthetic rate

POD

peroxidase

ROS

reactive oxygen species

SA

salicylic acid

snc1

suppressor of npr1-1 constitutive 1

SOD

superoxide dismutase

Wt

wild type

ΦPS2

quantum efficiency of photosystem 2.

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lin Hao
    • 1
  • Yan Zhao
    • 1
  • Dandan Jin
    • 1
  • Ling Zhang
    • 1
  • Xiaohua Bi
    • 1
  • Hongxing Chen
    • 1
  • Qiang Xu
    • 1
  • Chunyan Ma
    • 1
  • Guangzhe Li
    • 1
  1. 1.College of life and chemistry, Shenyang Normal UniversityShenyangPeople’s Republic of China

Personalised recommendations