Skip to main content
Log in

Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

We investigated the genetic diversity of arbuscular mycorrhizal fungi (AMF) in soils and the roots of Phalaris aquatica L., Trifolium subterraneum L., and Hordeum leporinum Link growing in limed and unlimed soil, the influence of lime application on AMF colonization and the relationship between AMF diversity and soil chemical properties.

Methods

The sampling was conducted on a long-term liming experimental site, established in 1992, in which lime was applied every 6 years to maintain soil pH (in CaCl2) at 5.5 in the 0–10 cm soil depth. Polymerase chain reaction, cloning and sequencing techniques were used to investigate the diversity of AMF.

Results

Altogether, 438 AMF sequences from a total of 480 clones were obtained. Sequences of phylotypes Aca/Scu were detected exclusively in soil, while Glomus sp. (GlGr Ab) and an uncultured Glomus (UnGlGr A) were detected only in plant roots. Glomus mosseae (GlGr Aa) was the dominant AMF in the pastures examined; however, the proportion of G. mosseae was negatively correlated with soil pH, exchangeable Ca and available P. Generally, diversity of the AMF phylotypes was greater in the bulk unlimed soil and plants from this treatment when compared to the limed treatments.

Conclusions

Long-term lime application changed soil nutrient availability and increased AMF colonization, but decreased AMF phylotype diversity, implying that soil chemistry may determine the distribution of AMF in acid soils. Future studies are required to explore the functions of these AMF groups and select the most efficient AMF for sustainable farming in acid soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1977) Infectivity and effectiveness of vesicular-carbuncular mycorrhizal fungi: effect of inoculums type. Aust J Agr Res 32:631–639

    Article  Google Scholar 

  • Akinrinde EA (2008) Lime and phosphorus effects in maize (Zea mays L.) production. Res Crops 9:547–553

    Google Scholar 

  • Alguacil MM, Lozano Z, Campoy MJ, Rold A (2010) Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol Biochem 42:1114–1122

    Article  CAS  Google Scholar 

  • Alguacil MM, Torres MP, Torrecillas E, Diaz G, Roldan A (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173

    Article  CAS  Google Scholar 

  • Alkan N, Gadkar V, Yarden O, Kapulnik Y (2006) Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Appl Environ Microb 72:4192–4199

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bardgett RD, Leemans DK, Cook R, Hobbs PJ (1997) Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biol Biochem 29:1285–1294

    Article  CAS  Google Scholar 

  • Bartolomeesteban H, Schenck N (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminum saturation. Mycologia 86:217–226

    Article  CAS  Google Scholar 

  • Bhadalung NN, Suwanarit A, Dell B, Nopamornbodi O, Thamchaipenet A, Rungchuang J (2005) Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant Soil 270:371–382

    Article  CAS  Google Scholar 

  • Callaway RM, Mahall BE, Wicks C, Pankey J, Zabinski C (2003) Soil fungi and the effects of an invasive forb on grasses: neighbor identity matters. Ecology 84:129–135

    Article  Google Scholar 

  • Chang CS, Sung JM (2004) Nutrient uptake and yield responses of peanuts and rice to lime and fused magnesium phosphate in an acid soil. Field Crops Res 89:319–325

    Article  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Article  Google Scholar 

  • Clapp JP, Rodriguez A, Dodd JC (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 149:539–554

    Article  CAS  Google Scholar 

  • Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22

    Article  CAS  Google Scholar 

  • Colwell J (1963) The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust J Exp Agric Anim Husb 3:190–198

    Article  CAS  Google Scholar 

  • Cuenca G, Lovera M (2010) Seasonal variation and distribution at different soil depths of arbuscular mycorrhizal fungi spores in a tropical sclerophyllous shrubland. Botany-Botanique 88:54–64

    Article  Google Scholar 

  • Cui MY, Caldwell MM (1996) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches.2. Hyphae exploiting root-free soil. New Phytol 133:461–467

    Article  CAS  Google Scholar 

  • Da Silva GA, Lumini E, Costa Maia L, Bonfante P, Bianciotto V (2006) Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza 16:183–189

    Article  PubMed  CAS  Google Scholar 

  • Dhillion SS, Gardsjord TL (2004) Arbuscular mycorrhizas influence plant diversity, productivity, and nutrients in boreal grasslands. Can J Bo 82:104–114

    Article  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Comm Soil Sci Plant Anal 19:959–987

    Article  CAS  Google Scholar 

  • Gillman G, Sumpter E (1986) Modification to the compulsive exchange method for measuring exchange characteristics of soils. Aust J Soil Res 24:61–66

    Article  CAS  Google Scholar 

  • Gotelli N, Colwell RK (2001) Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Guo Y, Ni Y, Huang J (2010) Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop Grassl 44:109–114

    Google Scholar 

  • Haling R, Simpson R, Delhaize E, Hocking P, Richardson A (2010) Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil. Plant Soil 327:199–212

    Article  CAS  Google Scholar 

  • Hamel C, Dalpe Y, Lapierre C, Simard RR, Smith DL (1996) Endomycorrhizae in a newly cultivated acidic meadow: Effects of three years of barley cropping, tillage, lime, and phosphorus on root colonization and soil infectivity. Biol Fertil Soils 21:160–165

    Article  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  PubMed  CAS  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Jansa J, Smith F, Smith S (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  PubMed  CAS  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae. Ecol Appl 3:749–757

    Article  Google Scholar 

  • Johnson D, Ijdo M, Anderson IC, Alexander IJ (2005a) Do plant communities influence microbial diversity and function? Comp Biochem Physiol Mol Integr Physiol 141:S220–S220

    Google Scholar 

  • Johnson D, Leake JR, Read DJ (2005b) Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland. Plant Soil 271:157–164

    Article  CAS  Google Scholar 

  • Johnson D, Anderson IC, Williams A, Whitlock R, Grime JP (2010) Plant genotypic diversity does not beget root-fungal species diversity. Plant Soil 336:107–111

    Article  CAS  Google Scholar 

  • Krebs C (1989) Ecological methodology. HarperCollins, New York

    Google Scholar 

  • Li GD, Singh RP, Brennan JP, Helyar KR (2010a) A financial analysis of lime application in a long-term agronomic experiment on the south-western slopes of New South Wales. Crop Past Sci 61:12–23

    Article  CAS  Google Scholar 

  • Li L-F, Li T, Zhang Y, Zhao Z-W (2010b) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427

    Article  PubMed  CAS  Google Scholar 

  • Lux H, Cumming J (2001) Mycorrhizae confer aluminium resistance to tulip-poplar seedlings. Can J Forest Res 31:694–702

    CAS  Google Scholar 

  • Martinez-Garcia LB, Pugnaire FI (2011) Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Appl Soil Ecol 48:313–317

    Article  Google Scholar 

  • Martini JA, Mutters RG (1985) Effect of lime rates on nutrient availability, mobility, and uptake during the soybean-growing season.1. aluminum, manganese, and phosphorus. Soil Sci 139:219–226

    Article  CAS  Google Scholar 

  • Morton JB (1995) Taxonomic and phylogenetic divergence among 5 scutellospora species based on comparative developmental sequences. Mycologia 87:127–137

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bosch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Olsson P, Hansson M, Burleigh S (2006) Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Appl Environ Microb 72:4115–4120

    Article  CAS  Google Scholar 

  • Payne R, Harding S, Murray D, Soutar D, Baird D, Glaser A, Channing I, Welham S, Gilmour A, Thompson R, Webster R (2010) The Guide to GenStat Release 13, Part 2: statistics. VSN International, Hemel Hempstead

    Google Scholar 

  • Porter W, Robson A, Abbott L (1987) Factors controlling the distribution of vesicular arbuscular mycorrhizal fungi in relation to soil-pH. J Appl Ecol 24:663–672

    Article  Google Scholar 

  • Raznikiewicz H, Carlgren K, Martensson A (1994) Impact of phosphorus fertilization and liming on the presence of arbuscular mycorrhizal spores in a swedish long-term field experiment. Swed J Agr Res 24:157–164

    Google Scholar 

  • Rodriguez A, Dougall T, Dodd JC, Clapp JP (2001) The large subunit ribosomal RNA genes of Entrophospora infrequens comprise sequences related to two different glomalean families. New Phytol 152:159–167

    Article  CAS  Google Scholar 

  • Rosendahl S, McGee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schwarzott D, Walker C, Schüssler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evolut 21:190–197

    Google Scholar 

  • Sen R, Hepper CM, Azcon-Aguilar C, Rosendahl S (1990) Competition between introduced and indigenous mycorrhizal fungi (Glomus spp.) for root colonization of leek. Agr Eco Envir 29:355–359

    Article  Google Scholar 

  • Smith S, Read D (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy. In USDA-Natural resources conservation service, Washington, DC

  • Sonjak S, Udovic M, Wraber T, Likar M, Regvar M (2009) Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Secovlje salterns. Soil Biol Biochem 41:1847–1856

    Article  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Troeh ZI, Loynachan TE (2009) Diversity of arbuscular mycorrhizal fungal species in soils of cultivated soybean fields. Agro J 101:1453–1462

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Press, Paris, pp 217–221

    Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hyhridization. Mycorrhiza 8:203–206

    Article  CAS  Google Scholar 

  • Unkovich MJ, Sanford P, Pate JS (1996) Nodulation and nitrogen fixation by subterranean clover in acid soils as influenced by lime application, toxic aluminium, soil mineral N, and competition from annual ryegrass. Soil Biol Biochem 28:639–648

    Article  CAS  Google Scholar 

  • Vandenkoornhuyse P, Leyval C, Bonnin I (2001) High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events. Heredity 87:243–253

    Article  PubMed  CAS  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Wakelin SA, Gregg AL, Simpson RJ, Li GD, Riley IT, McKay AC (2009) Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia 52:237–251

    Article  CAS  Google Scholar 

  • Wenke L (2008) N, P contribution and soil adaptability of four arbuscular mycorrhizal fungi. Acta Agr Scand B-S P 58:285–288

    Google Scholar 

  • Whelan A, Alexander M (1986) Effects of low pH and high Al, Mn and Fe levels on the survival of Rhizobium trifolii and the nodulation of subterranean clover. Plant Soil 92:363–371

    Article  CAS  Google Scholar 

  • Yano K, Takaki M (2005) Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biol Biochem 37:1569–1572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the 2010 New Initiative Grant from EH Graham Centre for Agricultural Innovation. The technical help of Mr Xiaocheng Zhu, Dr Rosy Raman, and Ms Rujuan Huang is gratefully acknowledged. Our thanks extended to Dr Benjamin Stodart who kindly reviewed the manuscript and made constructive comments. The senior author received financial support from Chinese Scholarship Council to work in Australia for 12 months.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Guo.

Additional information

Responsible Editor: Peter Christie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y.J., Ni, Y., Raman, H. et al. Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application. Plant Soil 351, 389–403 (2012). https://doi.org/10.1007/s11104-011-0976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0976-7

Keywords

Navigation