Plant and Soil

, Volume 349, Issue 1–2, pp 367–376 | Cite as

Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus

  • Claudia Janette De la Rosa-Mera
  • Ronald Ferrera-Cerrato
  • Alejandro Alarcón
  • María de Jesús Sánchez-Colín
  • Omar David Muñoz-Muñiz
Regular Article

Abstract

Vinca (Catharanthus roseus (L.) G. Don.) is an important medicinal plant species from which antineoplastic alkaloids such as vinblastine are extracted. However, neither abiotic stress nor inoculation of arbuscular mycorrhizal fungi (AMF) has been evaluated on the accumulation of vinca alkaloids under controlled conditions. This study evaluated the effects of AMF and/or abiotic stress induced by the application of potassium bicarbonate (KHCO3) and/or sodium chloride (NaCl) on plant growth, and on total content of phenolic compounds (TCPC), total antioxidant activity (TAOX), and total content of vinblastine alkaloid in leaves of vinca. TCPC, TAOX, and vinblastine were measured via spectrophotometric methods. After 75 days under greenhouse conditions, either the AMF inoculation without abiotic stress or the application of KHCO3 (2.5 and 7.5 mM) resulted in significantly (P ≤ 0.001) enhanced plant growth, TCPC, TAOX, and total content of vinblastine. The application of NaCl significantly diminished plant growth, but did not stimulate the content of vinblastine. The combined application of NaCl and KHCO3 significantly decreased AMF-colonization in roots. The sole inoculation of AMF or the single application of 7.5 mM KHCO3 induced the accumulation of vinblastine in leaves of vinca.

Keywords

Glomus KHCO3 Plant stress Salinity Total antioxidant activity Vinca 

References

  1. Anjum MA (2008) Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. Acta Physiol Plant 30:43–52CrossRefGoogle Scholar
  2. Asaeda T, Manatunge J, Fujino T, Sovira D (2003) Effects of salinity and cutting on the development of Phragmites australis. Wetl Ecol Manag 11:127–140CrossRefGoogle Scholar
  3. Aslam J, Mujib A, Nasim SA, Sharma MP (2009) Screening of vincristine yield in ex vitro and in vitro somatic embryos derived plantlets of Catharanthus roseus L (G) Don. Sci Hort 119:325–329CrossRefGoogle Scholar
  4. Brundrett MC, Abbott LK (2002) Arbuscular mycorrhizas in plant communities. In: Sivasithamparam K, Dixon KW, Barrett RL (Eds) Microorganisms in plant conservation and biodiversity. Kluwer, pp 151–193Google Scholar
  5. Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281CrossRefGoogle Scholar
  6. Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302:33–43CrossRefGoogle Scholar
  7. Cartmill AD, Alarcón A, Valdez-Aguilar LA (2007) Arbuscular mycorrhizal fungi enhance tolerance of Rosa multiflora cv. Burr to bicarbonate in irrigation water. J Plant Nutr 30:1517–1540CrossRefGoogle Scholar
  8. Cartmill AD, Valdez-Aguilar LA, Bryan DL, Alarcón A (2008) Arbuscular mycorrhizal fungi enhance tolerance of vinca to high alkalinity in irrigation water. Sci Hort 115:275–284CrossRefGoogle Scholar
  9. Charitha DM, Reddy MN (2002) Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regul 37:151–156CrossRefGoogle Scholar
  10. Chung IM, Kim JJ, Lim JD, Yu CY, Kim SH, Hahn SJ (2006) Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ Exp Bot 56:44–53CrossRefGoogle Scholar
  11. Cragg GM, Newman DJ, Kingston DGI (2010) Terrestrial plants as a source of novel pharmaceutical agents. Comprehensive Natural Products II:5–39CrossRefGoogle Scholar
  12. Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200CrossRefGoogle Scholar
  13. Duarte-Silva I, Gaspar J, Gomes da Costa G, Rodrigues AS, Laires A, Rueff J (2000) Chemical features of flavonols affecting their genotoxicity. Potential implications in their use as therapeutical agents. Chem Biol Interact 124:29–51CrossRefGoogle Scholar
  14. Eon AH, Lee SS, Ahn TK, Lee MW (1994) Ecological roles of arbuscular mycorrhizal fungi in two wild legume plants. Mycoscience 35:69–75CrossRefGoogle Scholar
  15. Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecol 54:753–760CrossRefGoogle Scholar
  16. Grassmann J, Hippeli S, Elstner EF (2002) Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol Biochem 40:471–478CrossRefGoogle Scholar
  17. Greipsson S, El-Mayas H (2002) Synergistic effect of soil pathogenic fungi and nematodes reducing bioprotection of arbuscular mycorrhizal fungi on the grass Leymus arenarius. Biocontrol 47:715–727CrossRefGoogle Scholar
  18. Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci 160:925–932PubMedCrossRefGoogle Scholar
  19. Hanen F, Ksouri R, Megdiche W, Trabelsi N, Boulaaba M, Abdelly C (2008) Effect of salinity on growth, leaf-phenolic content and antioxidant scavenging activity in Cynara cardunculus L. In: Abdelly C, Öztürk M, Ashraf M, Grignon C, (Eds.). Biosaline agriculture and high salinity tolerance. Birkhäuser, Switzerland, pp 335–343Google Scholar
  20. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMedCrossRefGoogle Scholar
  21. Himes RH (1991) Interactions of the Catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol Ther 5:257–267CrossRefGoogle Scholar
  22. Juszczuk IM, Wiktorowska A, Malusá E, Rychter AM (2004) Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267:41–49CrossRefGoogle Scholar
  23. Kahiluoto H, Ketoja E, Vestberg M (2000) Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization 1. Bioassays in a growth chamber. Plant Soil 227:191–206CrossRefGoogle Scholar
  24. Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463CrossRefGoogle Scholar
  25. Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare Mill on mycorrhizal inoculation supplemented with P-fertilizer. Biores Technol 93:307–311CrossRefGoogle Scholar
  26. Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin in Artemisia annua L. Mycorrhiza 17:581–587PubMedCrossRefGoogle Scholar
  27. Kato L, Marques-Braga R, Koch I, Kinoshita LS (2002) Indole alkaloids from Rauvolfia bahiensis A.DC. (Apocynaceae). Phytochemistry 60:315–320PubMedCrossRefGoogle Scholar
  28. Khan MH, Singha KLB, Panda SK (2002) Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress. Acta Physiol Plant 24:145–148CrossRefGoogle Scholar
  29. Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglsser K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446PubMedCrossRefGoogle Scholar
  30. Kruczynski AB, Hill T (2001) Vinflunine, the latest vinca alkaloid in clinical development: A review of its preclinical anticancer properties. Critical Rev Oncol Hemat 40:159–173CrossRefGoogle Scholar
  31. Malenčić DJ, Vasić D, Popović M, Dević D (2004) Antioxidant systems in sunflower as affected by oxalic acid. Biol Plant 48:243–247CrossRefGoogle Scholar
  32. Matthäus M (2002) Antioxidant activity of extracts obtained from residues of different oilseeds. J Agric Food Chem 50:3444–3452PubMedCrossRefGoogle Scholar
  33. Mesia K, Cimanga RK, Dhooghe L, Cos P, Totté J, Tona L, Pieters L, Vlietinck AJ, Apers S, Maes L (2010) Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. J Ethnopharmacol 131:10–16PubMedCrossRefGoogle Scholar
  34. Monzón A, Azcón R (2001) Growth responses and N and P use efficiency of three Alnus species as affected by arbuscular-mycorrhizal colonization. Plant Growth Regul 35:97–104CrossRefGoogle Scholar
  35. Morone-Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. Hirtum (Link) Ietswaart. Plant Cell Tissue Organ Cult 93:139–149CrossRefGoogle Scholar
  36. Nagahashi G, Douds DD (2005) Environmental factors that affect presymbiotic hyphal growth and branching of arbuscular mycorrhizal fungi. In: Declerck S, Strullu DG, Fortin A (eds) Soil Biology. Springer, Berlin, pp 95–110Google Scholar
  37. Nagaraja P, Vasantha RA, Yathirajan HS (2002) Sensitive methods for the spectrophotometric determination of antineoplastic compounds. ARS Pharmaceutica 43:121–133Google Scholar
  38. Neffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crop Prod 28:137–142CrossRefGoogle Scholar
  39. Neumann KH, Imani J, Kumar A (2009) Principles and Practice, Plant Cell and Tissue Culture - A tool in Biotechnology Principles and Practice. Springer, BerlinGoogle Scholar
  40. Nikolaeva IG, Dymsheeva LD, Nikolaev SM, Nikolaeva GG (2007) Medicinal plants, antioxidant activity and flavonoid composition of the new nootropic preparation polynoophyt. Pharm Chem J 41:532–535CrossRefGoogle Scholar
  41. Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26:1682–1688CrossRefGoogle Scholar
  42. Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Lüttge U., Beyschlag, W., Murata, J. (eds), Progress in Botany 69. Springer, Berlin, pp 231–245Google Scholar
  43. Pereira DM, Ferreres F, Oliveira JMA, Gaspar L, Faria J, Valentão P, Sottomayor M, Andrade PB (2010) Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine 17:646–652PubMedCrossRefGoogle Scholar
  44. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  45. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398PubMedCrossRefGoogle Scholar
  46. Rabbani-Chadegani A, Chamani E, Hajihassan Z (2009) The effect of vinca alkaloid anticancer drug, vinorelbine, on chromatin and histone proteins in solution. Eur J Pharmacol 613:34–38PubMedCrossRefGoogle Scholar
  47. Risinger AL, Giles FJ, Mooberry SL (2009) Microtubule dynamics as a target in oncology. Cancer Treat Rev 35:255–261PubMedCrossRefGoogle Scholar
  48. Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321PubMedCrossRefGoogle Scholar
  49. Robertson SJ, McGill WB, Massicote HB, Rutherford PM (2007) Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biol Rev 82:213–240PubMedCrossRefGoogle Scholar
  50. Ruíz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143CrossRefGoogle Scholar
  51. Ryabushkina NA (2005) Synergism of metabolite action in plant responses to stresses. Russ J Plant Physiol 52:614–621CrossRefGoogle Scholar
  52. Sailo G, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798PubMedCrossRefGoogle Scholar
  53. Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidante activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 9:85–91CrossRefGoogle Scholar
  54. SAS Institute (2002) The SAS system for windows, ver. 9.0. SAS Institute, Cary, North Carolina. USAGoogle Scholar
  55. Sharma D, Kapoor R, Bhatnagar AK (2008) Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn.: an endangered medicinal herb. World J Microb Biot 24:395–400CrossRefGoogle Scholar
  56. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296PubMedCrossRefGoogle Scholar
  57. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic -phosphotungstic acid reagents. Am J Enol Vitic 16:144–147Google Scholar
  58. Soong YY, Barlow PJ (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88:411–417CrossRefGoogle Scholar
  59. Sottomayor M, Ros-Barcelo A (2006) The vinca alkaloids: From biosynthesis and accumulation in plant cells, to uptake, activity and metabolism in animal cells. Stud Nat Prod Chem 33:813–857CrossRefGoogle Scholar
  60. Toussaint JP, Smith A, Smith E (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297PubMedCrossRefGoogle Scholar
  61. Trejo TG, Rodríguez MM (2007) Cellular aggregation in secondary metabolite production in in vitro plant cell cultures. Interciencia 32:669–674 (In Spanish)Google Scholar
  62. Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157CrossRefGoogle Scholar
  63. Verpoorte R, Frédérich M, Delaude C, Angenot L, Dive G, Thépenier P, Jacquier MJ, Zèches-Hanrot M, Lavaud C, Nuzillard JM (2010) Moandaensine, a dimeric indole alkaloid from Strychnos moandaensis (Loganiaceae). Phytochem Lett 3:100–103CrossRefGoogle Scholar
  64. Winkelman M (1986) Frequently used medicinal plants in Baja California Norte. J Ethnopharmacol 18:109–131PubMedCrossRefGoogle Scholar
  65. Woo HH, Jeong BR, Hawes MC (2005) Flavonoids: from cell cycle regulation to biotechnology. Biotechnol Lett 27:365–374PubMedCrossRefGoogle Scholar
  66. Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Claudia Janette De la Rosa-Mera
    • 1
    • 4
  • Ronald Ferrera-Cerrato
    • 1
  • Alejandro Alarcón
    • 1
  • María de Jesús Sánchez-Colín
    • 2
  • Omar David Muñoz-Muñiz
    • 3
  1. 1.Área de Microbiología. Postgrado de EdafologíaColegio de Postgraduados Campus MontecilloMontecilloMéxico
  2. 2.Facultad de Estudios Superiores, ZaragozaUniversidad Nacional Autónoma de MéxicoIztapalapaMéxico
  3. 3.Unidad de Servicios de Apoyo en Resolución AnalíticaUniversidad VeracruzanaXalapaMéxico
  4. 4.Departamento de Biología (Área de Botánica), División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana-IztapalapaIztapalapaMéxico

Personalised recommendations