Skip to main content

Savanna soil fertility limits growth but not survival of tropical forest tree seedlings

Abstract

Background and Aims

Cerradão (Brazilian woodland savannas) and seasonally dry forests (SDF) from southeastern Brazil occur under the same climate but are remarkably distinct in species composition. The objective of this study was to evaluate the role of soil origin in the initial growth and distribution of SDF and Cerradão species.

Methods

We conducted a greenhouse experiment growing Cerradão and SDF tree seedlings over their soil and the soil of the contrasting vegetation type. We evaluated soil nutrient availability and seedling survivorship, growth and leaf functional traits.

Results

Despite the higher nutrient availability in SDF soils, soil origin did not affect seedling survivorship. The three SDF species demonstrated home-soil advantage, enhanced growth with increasing soil nutrient availability and had higher growth rates than Cerradão species, even on Cerradão soils. Growth of Cerradão seedlings was not higher on Cerradão soil and, overall, was not positively correlated with soil nutrient availability.

Conclusions

SDF species are fast-growing species while Cerradão trees tend to be slow-growing species. Although savanna soil reduces growth of forest species, our findings suggest that soil chemical attributes, alone, does not exclude the occurrence of SDF seedlings in Cerradão and vice-versa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

LAR:

leaf area ratio

LD:

leaf tissue density

LMR:

leaf mass ratio

LT:

leaf thickness

NAR:

net assimilation rate

RGR:

relative growth rate

SDF:

seasonally dry forest

SLA:

specific leaf area

References

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Ex Bot 50:29–37

    Article  CAS  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Baltzer JL, Thomas SC, Nilus R, Burslem DFRP (2005) Edaphic specialization in tropical trees: physiological correlates and responses to reciprocal transplantation. Ecology 86:3063–3077. doi:10.1890/04-0598

    Article  Google Scholar 

  • Banfai DS, Bowman DMJS (2005) Dynamics of a savanna-forest in the Australian monsoon tropics inferred from stand structures and historical aerial photography. Aust J Bot 53:185–194. doi:10.1071/BT04141

    Article  Google Scholar 

  • Barger NN, D’Antonio CM, Ghneim T, Brink K, Cuevas E (2002) Nutrient limitation to primary productivity in a secondary Savanna in Venezuela. Biotropica 34:493–501

    Google Scholar 

  • Berendse F (1994) Competition between plant populations at low and high nutrient supplies. Oikos 71:253–260

    Article  Google Scholar 

  • Bond WJ (2010) Do nutrient-poor soils inhibit development of forests? A nutrient stock analysis. Plant Soil 334:47–60. doi:10.1007/s11104-010-0440-0

    Article  CAS  Google Scholar 

  • Bowman DMJS, Panton WJ (1993) Factors that control monsoon-rainforest seedling establishment and growth in North Australian Eucalyptus Savanna. J Ecol 81:297–304

    Article  Google Scholar 

  • Bowman DMSJ (1992) Monsoon Forests in North-western Australia. II* Forest-Savanna Transitions. Aust J Bot 40:89–102

    Article  Google Scholar 

  • Brenes-Arguedas T, Ríos M, Rivas-Torres G, Blundo C, Coley PD, Kursar TA (2008) The effect of soil on the growth performance of tropical species with contrasting distributions. Oikos 117:1453–1460. doi:10.1111/j.2008.0030-1299.16903.x

    Article  Google Scholar 

  • Chapin FS III, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127(1):48–58

    Article  Google Scholar 

  • Durigan G, Ratter JA (2006) Succesional changes in Cerrado and Cerrado/Forest Ecotonal vegetation in western São Paulo State, Brazil, 1962–2000. Edinb J Bot 63:119–130. doi:10.1017/S0960428606000357

    Article  Google Scholar 

  • EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solo, 2nd edn. Centro Nacional de Pesquisa de Solos, Rio de Janeiro

    Google Scholar 

  • Faria SM, Franco A, Menandro MS, Jesus RM, Baitello JB, Aguiar OT, Dobereiner J (1984) Levantamento da nodulação de leguminosas florestais nativas na região sudeste do Brasil. Pesq Agropecu Bras 19:143–153

    Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665. doi:10.1126/science.1098982

    PubMed  Article  CAS  Google Scholar 

  • Furley PA, Ratter JA (1988) Soil resources and plant communities of the central Brazilian Cerrado and their development. J Biogeogr 15:97–108

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary biology. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Haridasan M (2000) Nutrição mineral de plantas nativas do cerrado. Rev Bras Fisiol Veg 12:54–64

    CAS  Google Scholar 

  • Hoffmann WA (2000) Post-establishment seedling success in the Brazilian cerrado: a comparison of savanna and forest species. Biotropica 32:62–69

    Google Scholar 

  • Hoffmann WA, Franco AC (2003) Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. J Ecol 91:475–484

    Article  Google Scholar 

  • Hoffmann WA, Orthen B, Nascimento PKV (2003) Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17:720–726

    Article  Google Scholar 

  • Hoffmann WA, Orthen B, Franco AC (2004) Constrains to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140:252–260. doi:10.1007/s00442-004-1595-2

    PubMed  Article  Google Scholar 

  • Jackson RB, Manwaring JH, Caldwell MM (1990) Rapid physiological adjustment of roots to localized soil enrichment. Nature 344:58–60

    PubMed  Article  CAS  Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. P Natl Acad Sci 104:864–869

    Article  CAS  Google Scholar 

  • Juhász CEP, Cursi PR, Cooper M, Oliveira TC, Rodrigues RR (2006) Dinâmica físico-hídrica de uma toposseqüência de solos sob savana florestada (Cerradão) em Assis, SP. Rev Bras Cienc Solo 30:401–412

    Article  Google Scholar 

  • Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Funct Ecol 21:1034–1043. doi:10.1111/j.1365-2435.2007.01325.x

    Article  Google Scholar 

  • Kronka FJN, Nalon MA, Matsukuma CK, Kanashiro MSS, Pavao M, Shida CN, Joly CA, Couto HTZ, Baitello JB, Guillaumon JR (2005) Inventário florestal da vegetação natural do Estado de São Paulo. Secretaria de Estado do Meio Ambiente, São Paulo

    Google Scholar 

  • Lehmann CER, Archibald SA, Hoffmann WA, Bond WJ (2011) Deciphering the distribution of the savanna biome. New Phytol. doi:10.1111/j.1469-8137.2011.03689.x

  • Liancourt P, Callaway RM, Michalet R (2005) Stress tolerance and competitive-response ability determine the outcome of biotic interactions. Ecology 86:1611–1618. doi:10.1890/04-1398

    Article  Google Scholar 

  • McGraw JB, Chapin FS III (1989) Competitive ability and adaptation to fertile and infertile soil in two Eriophorum species. Ecology 70:736–749

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    PubMed  Article  CAS  Google Scholar 

  • Oliveira-Filho AT, Curi N, Vilela EA, Carvalho DA (2001) Variation in tree community composition and structure with changes in soil properties within a fragment of semideciduous forest in South-eastern Brazil. Edinb J Bot 58:139–158. doi:10.1017/S0960428601000506

    Article  Google Scholar 

  • Oliveira-Filho AT (2006) Catálogo das árvores nativas de Minas Gerais: mapeamento e inventário da flora nativa e dos reflorestamentos de Minas Gerais. Editora UFLA, Lavras

    Google Scholar 

  • Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt D, Ashton P (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92:609–623

    Article  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743

    PubMed  Article  Google Scholar 

  • Ratter JA (1992) Transition between cerrado and forest vegetation in Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman and Hall, London, pp 417–429

    Google Scholar 

  • Ribeiro JF, Walter BMT (1998) Fitofisionomias do Bioma Cerrado. In: Sano S, Almeida S (eds) Cerrado: ambiente e flora. Embrapa-CPAC, Brasília, pp 89–166

    Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in Cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Sardans J, Peñuelas J, Roda F (2005) Changes in nutrient use efficiency, status and retranslocation in young post-fire regeneration Pinus halepensis in response to sudden N and P input, irrigation and removal of competing vegetation. Trees-Struct Funct 19:233–250. doi:10.1007/s00468-004-0374-3

    Article  CAS  Google Scholar 

  • Sardans J, Roda F, Peñuelas J (2006) Effects of a nutrient pulse supply on nutrient status of the Mediterranean trees Quercus ilex subsp. ballota and Pinus halepensis on different soils and under different competitive pressure. Trees 20:619–632. doi:10.1007/s00468-006-0077-z

    Article  Google Scholar 

  • Scarpa FM (2007) Estudo comparativo do crescimento de plântulas e dos atributos foliares em espécies do Cerrado e da Mata Atlântica. Campinas State University, Dissertation

    Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    PubMed  Article  CAS  Google Scholar 

  • Sylvester-Bradley R, Oliveira LA, Podesta-Filho JA, St. John TV (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum in representative soils of Central Amazonia. Agro-Ecosystems 6:249–266

    Article  Google Scholar 

  • Theodose TA, Bowman WD (1997) Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. Ecology 78:1861–1872

    Article  Google Scholar 

  • van Raij B, Cantarella H, Quaggio JA, Andrade JC (2001) Análise Química para Avaliação da Fertilidade de Solos Tropicais. Instituto Agronômico, Campinas

    Google Scholar 

  • Veloso HP (1992) Manual técnico da vegetação brasileira. IBGE-Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro

    Google Scholar 

  • Wang L, D'Odorico P, Ries L, Caylor K, Macko S (2010) Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas. Plant and Soil 328:95–108. doi:110.1007/s11104-11009-10085-z

    Article  CAS  Google Scholar 

  • Wang L, Mou PP, Jones RH (2006) Nutrient foraging via physiological and morphological plasticity in three plant species. Can J For Res 36:164–173. doi:10.1139/X05-239

    Article  CAS  Google Scholar 

  • Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493

    Google Scholar 

  • Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rain gradients. J Ecol 87:85–97

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) doctoral scholarship and by a Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) “sandwich” program scholarship (200845/2008-0) from the Government of Brazil, for R.A.G. Viani. Authors are thankful for Pedro Brancalion for helpful comments in an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. G. Viani.

Additional information

Responsible Editor: Harry Olde Venterink.

Appendix

Appendix

Table 5 Mean (± SE) values for plant traits of tree seedlings grown on a greenhouse experiment with Cerradão and SDF soil. Within lines, means followed by different letters indicate significant differences between species (P < 0.05, two-way Anova, followed by Tukey’s post-hoc test). SDF species: BR: Balfourodendron riedelianum; CE: Cariniana estrellensis; CT: Centrolobium tomentosum. Cerradão species: DM: Dimorphandra mollis; MA: Machaerium acutifolium; SO: Stryphnodendron obovatum

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Viani, R.A.G., Rodrigues, R.R., Dawson, T.E. et al. Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant Soil 349, 341–353 (2011). https://doi.org/10.1007/s11104-011-0879-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0879-7

Keywords

  • Atlantic forest
  • Cerrado
  • Savanna-forest boundaries
  • Soil fertility
  • Nutrient availability
  • Growth strategies