Abstract
Producing nonmycorrhizal plants in the field is a challenge due to the ubiquitous distribution of arbuscular mycorrhizal [AM] fungi and impacts of chemical treatments upon nontarget organisms. A field plot was covered with ground cover fabric to prohibit plant growth and take advantage of the obligate symbiotic nature of AM fungi to selectively starve and remove them from the soil microbiological community. The decline in the AM fungus population was monitored through spore counts and most probable number bioassays. Response to inoculation experiments were conducted to contrast the response of Allium porrum L. to inoculation with in vitro produced spores of Glomus intraradices Schenck and Smith when plants were grown in the AM fungus-depleted soil vs. soil from an adjacent, cropped plot. Data indicated a strongly diminished, yet still viable population of AM fungi after 39 months of bare fallow. Plants grown in cropped soil showed no growth response nor increase in percentage root length colonized as a result of inoculation, while the response to inoculation of plants grown in the covered soil increased as the population of AM fungi declined below 1 propagule cm−3.

Similar content being viewed by others
References
Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cumm. & Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117
Alexander M (1965) Most-probable-number method for microbial populations. In: Black CA, Evans DD, Ensminger LE, White JL, Clark FE (eds) Methods of soil analysis part 2 chemical and microbiological properties. American Society of Agronomy, Madison, pp 1467–1472
Allen MF, Sexton JC, Moore TS, Christensen M (1981) Influence of phosphate source on vesicular-arbuscular mycorrhizae of Bouteloua gracilis. New Phytol 87:687–694
Amaranthus MP, Trappe JM (1993) Effects of erosion on ecto- and VA-mycorrhizal inoculum potential of soil following forest fire in southwest Oregon. Plant Soil 150:41–49
Amijee F, Tinker PB, Stribley DB (1989) The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol 111:435–446
Augé RM (2000) Stomatal behavior of mycorrhizal plants. In: Kapulnik Y, Douds DD (eds) Arbuscular Mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 201–237
Bago B, Pfeffer PE, Douds DD, Brouillette J, Bécard G, Shachar-Hill Y (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–271
Bagyaraj DJ (1992) Vesicular-arbuscular mycorrhiza: application in agriculture. Methods Microbiol 24:359–373
Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325
Daniels BA, Trappe JM (1980) Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 77:457–471
Dodd JC, Dougall TA, Clapp JP, Jeffries P (2002) The role of arbuscular mycorrhizal fungi in plant community establishment at Samphiire Hoe, Kent, UK- the reclamation platform created during the building of the Channel tunnel between France and UK. Biodivers Conserv 11:39–58
Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5:25–29
Douds DD (2009) Utilization of inoculum produced on-farm for production of AM fungus colonized pepper and tomato seedlings under conventional management. Biol Agric Hortic 26:353–364
Douds DD, Reider C (2003) Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil. Biol Agric Hortic 21:91–102
Franke-Snyder M, Douds DD, Galvez L, Phillips JG, Wagoner P, Drinkwater LE, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48
Galvez L, Douds DD, Wagoner P, Longnecker LR, Drinkwater LE, Janke RR (1995) An overwintering cover crop increases inoculum of VAM fungi in agricultural soil. Am J Altern Agric 10:152–156
Gambiel A, Gadkar V, Zilberg V, Beniches M, Rabinowich E, Manor H, Wininger S, Kapulnik Y (2004) Effect of solarization intensity on the control of pink root of chives, and the response of the crop to AM fungal application. Symbiosis 37:233–247
Gerdemann JW, Nicholson TH (1963) Spores of mycorrhizal Endogone species extracted by wet sieving and decanting. Trans Br Mycol Soc 46:235–244
Hamel C, Dalpé Y, Furlan V, Parent S (1997) Indigenous populations of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrum L.) response to inoculation with Glomus intraradices Schenck and Smith or Glomus versiforme (Karsten) Berch. Mycorrhiza 7:187–196
Hoagland DR, Arnon DI (1938). The water-culture method for growing plants without soil. University of California College of Agriculture, Agriculture Experiment Station Circular 347. Berkeley, CA, USA
Jasper DA, Robson AD, Abbott LK (1979) Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biol Biochem 11:501–505
Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 73:288–300
Jifon JL, Graham JH, Drouillard DL (2002) Growth depression of mycorrhizal Citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2. New Phytol 153:133–142
Jordan N, Huerd S (2008) Effects of soil fungi on weed communities in a corn-soybean rotation. Renew Ag Food Sys 23:108–117
Kahiluoto H, Ketoja E, Vestberg M (2000) Creation of a non-mycorrhizal control for bioassay of AM effectiveness. 1. Comparison of methods. Mycorrhiza 9:241–258
Koide RT, Landherr LL, Besmer YL, Detweiler JM, Holcomb EJ (1999) Strategies for mycorrhizal inoculation of six annual bedding plant species. Hortscience 34:1217–1220
Larsen J, Thingstrup I, Jakobsen I, Rosendahl S (1996) Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus- cucumber symbiosis. New Phytol 132:127–133
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36
Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145
Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160
Reynolds L, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:8869–880
Rillig MC, Ramsey PW, Gannon JE, Mummey DL, Gadkar V, Kapulnik Y (2008) Suitability of mycorrhiza-defective mutant/wild type plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil 308:267–275
Schreiner RP, Ivors KL, Pinkerton JN (2001) Soil solarization reduces arbuscular mycorrhizal fungi as a consequence of weed suppression. Mycorrhiza 11:273–277
Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Duetsche Gesellschaft für Technische Zusammenarbeit (GTZ) GnbH. Eschborn
Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Amsterdam
Smith MD, Hartnett DC, Rice CW (2000) Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biol Biochem 32:935–946
Sorensen JN, Larsen J, Jakobsen I (2008) Pre-inoculation with arbuscular mycorrhizal fungi increases early nutrient concentration and growth of field-grown leeks under high productivity conditions. Plant Soil 307:135–147
St-Arnaud MC, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332
Sylvia DM, Hammond LC, Bennett JM, Haas JH, Linda SB (1993) Field response of maize to a VAM fungus and water management. Agron J 85:193–198
Thingstrup I, Rubaek G, Sibbeson E, Jakobsen I (1998) Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not at high soil P levels in the field. Plant Soil 203:37–46
Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. J Agric Res 38:847–867
Tommerup IC (1983) Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi in soil. Trans Br Mycol Soc 81:381–387
Tommerup IC (1984) Effect of soil water potential on spore germination by vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 83:193–202
Troeh ZI, Loynachan TE (2003) Endomycorrhizal fungal survival in continuous corn, soybean, and fallow. Agron J 95:224–230
West HM, Fitter AH, Watkinson AR (1993) The influence of three biocides on the fungal associates of the roots of Vulpia ciliata ssp ambigua under natural conditions. J Ecol 81:345–350
Acknowledgement
We would like to thank S. Campbell and J. Lee for their technical assistance.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Per Ambus.
Mention of a trade or brand name does not imply an endorsement by the US Department of Agriculture over others not mentioned.
Rights and permissions
About this article
Cite this article
Douds, D.D., Nagahashi, G., Wilson, D.O. et al. Monitoring the decline in AM fungus populations and efficacy during a long term bare fallow. Plant Soil 342, 319–326 (2011). https://doi.org/10.1007/s11104-010-0697-3
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s11104-010-0697-3

