Skip to main content
Log in

Pedogenic factors and measurements of the plant uptake of cobalt

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Understanding the factors which affect plant uptake of cobalt (Co) across a range of soil types is essential for both continued agricultural productivity as well as for possible remediation of contaminated sites. This review examines the relevant pedogenic processes contributing to plant uptake of Co from soils based on a critical evaluation of existing numerical data. Numerous pedogenic factors have been put forward in the scientific literature to account for the plant uptake of Co, including total, extractable and isotopically exchangeable soil Co concentrations, pH and other soil chemical parameters (e.g. manganese concentrations), microbial variations as well as anthropogenic inputs. Despite there being certain instances where significant correlations occur between these parameters and plant uptake of Co, an examination of multiple data sets shows that these relationships are spatially isolated. With the measureable parameters showing only weak correlations at best, there should be a degree of scepticism regarding the interpretation of reported data sets. Newly evolving techniques which assess kinetically-bioavailable in-situ soil concentrations, such as diffusive gradient thin-films, offer the potential to better address plant Co uptake across a range of soil types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams SN, Honeysett JL (1964) Some effects of soil waterlogging on the cobalt and copper status of pasture plants grown in pots. Aust J Agric Res 15:557–567

    Article  Google Scholar 

  • Adams SN, Honeysett JL, Tiller KG, Norrish K (1969) Factors controlling the increase of cobalt in plants following the addition of a cobalt fertilizer. Aust J Soil Res 7:29–42

    Article  CAS  Google Scholar 

  • Adriano DC, Delaney M, Paine D (1977) Availability of cobalt-60 to corn and bean seedlings as influenced by soil type, lime, and DTPA. Commun Soil Sci Plant Anal 8(8):615–628

    Article  CAS  Google Scholar 

  • Aery NC, Jagetiya BL (2000) Effect of cobalt treatments on dry matter production of wheat and DTPA extractable cobalt content in soils. Commun Soil Sci Plant Anal 31(9–10):1275–1286

    Article  CAS  Google Scholar 

  • Ahmed S, Evans HJ (1960) Cobalt: a micronutrient element for the growth of soybean plants under symbiotic conditions. Soil Sci 90:205–210

    Article  CAS  Google Scholar 

  • Amir H, Pineau R (2003a) Relationships between extractable Ni, Co, and other metals and some microbiological characteristics of different ultramafic soils from New Caledonia. Aust J Soil Res 41(2):215–228

    Article  CAS  Google Scholar 

  • Amir H, Pineau R (2003b) Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Can J Microbiol 49:288–293

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bakkaus E, Gouget B, Gallien J-P, Khodja H, Carrot F, Morel J-L, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instr Meth B 231:350–356

    Article  CAS  Google Scholar 

  • Bakkaus E, Collins RN, Morel JL, Gouget B (2008) Potential phytoavailability of anthropogenic cobalt in soils as measured by isotope dilution techniques. Sci Total Environ 406(1–2):108–115. doi:10.1016/j.scitotenv.2008.07.042

    CAS  PubMed  Google Scholar 

  • Berrow ML, Burridge JC, Reith JWS (1983) Soil drainage conditions and related plant trace element contents. J Sci Food Agric 34:53–54

    Google Scholar 

  • Boikat U, Fink A, Bleckneuhaus J (1985) Cesium and cobalt transfer from soil to vegetation on permanent pastures. Radiat Environ Biophys 24(4):287–301

    Article  CAS  PubMed  Google Scholar 

  • Bolland MDA (1985) Effect of nitrogen and cobalt application on herbage and seed yields of serradella and subterranean clover. Aust J Exp Agric 25(3):588–594

    Article  Google Scholar 

  • Brooks RR (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48:541–544

    Article  CAS  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Malaisse F (1978) Copper and cobalt in African species of Aeolanthus Mart. (Plectranthinae, Labiatae). Plant Soil 50:503–507

    Article  CAS  Google Scholar 

  • Busse M (1959) Uber die wirkungen von kobalt auf streckung, atmung und substanzeinbau in die zellwand bei avenakoleoptilen. Planta 53(1):25–44

    Article  CAS  Google Scholar 

  • Chatel DL, Robson AD, Gartrell JW, Dilworth MJ (1978) The effect of inoculation and cobalt application on growth of and nitrogen-fixation by sweet lupins. Aust J Agric Res 29(6):1191–1202

    Article  CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee J, Chatterjee C (2003) Management of phytotoxicity of cobalt in tomato by chemical measures. Plant Sci 164:793–801

    Article  CAS  Google Scholar 

  • Chatterjee C, Gopal R, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutr 29:127–136

    Article  CAS  Google Scholar 

  • Collins RN, Kinsela AS (2010) The aqueous phase speciation and chemistry of cobalt in terrestrial environments. Chemosphere 79(8):763–771. doi:10.1016/j.chemosphere.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  • Collins RN, Bakkaus E, Carriere M, Khodja H, Proux O, Morel JL, Gouget B (2010) Uptake, localization, and speciation of cobalt in Triticum aestivum L. (Wheat) and Lycopersicon esculentum M. (Tomato). Environ Sci Technol 44(8):2904–2910. doi:10.1021/es903485h

    Article  CAS  PubMed  Google Scholar 

  • Dilworth MJ, Robson AD, Chatel DL (1979) Cobalt and nitrogen-fixation in Lupinus angustifolius L.2. nodule formation and function. New Phytol 83(1):63–79

    Article  CAS  Google Scholar 

  • Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301(1–2):29–36. doi:10.1007/s11104-007-9405-3

    Article  CAS  Google Scholar 

  • Faucon MP, Colinet G, Mahy G, Luhembwe MN, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317(1–2):201–212. doi:10.1007/s11104-008-9801-3

    Article  CAS  Google Scholar 

  • Gerendas J, Polacco JC, Freyermuth SK, Sattelmacher B (1998) Co does not replace Ni with respect to urease activity in zucchini (Cucurbita pepo convar. giromontiina) and soybean (Glycine max). Plant Soil 203(1):127–135

    Article  CAS  Google Scholar 

  • Gille GL, Graham ER (1971) Isotopically exchangeable cobalt: the effect of soil pH and ionic saturation of the soil. Soil Sci Soc Am Proc 35:414–416

    Article  CAS  Google Scholar 

  • Gladstones JS, Loneragan JF, Goodchild NA (1977) Field responses to cobalt and molybdenum by different legume species, with inferences on role of cobalt in legume growth. Aust J Agric Res 28(4):619–628

    Article  Google Scholar 

  • Gopal R, Dube BK, Sinha P, Chatterjee C (2003) Cobalt toxicity effects on growth and metabolism of tomato. Commun Soil Sci Plant Anal 34(5–6):619–628

    Article  CAS  Google Scholar 

  • Gupta UC (1993) Cobalt content of forages and cereals grown on Prince Edward Island. Can J Soil Sci 73(1):1–7

    Google Scholar 

  • Hill AC, Toth SJ, Bear FE (1953) Cobalt status of New Jersey soils and forage plants and factors affecting the cobalt content of plants. Soil Sci 76:273–284

    Article  CAS  Google Scholar 

  • Hodgson JF (1981) Contribution of metal-organic complexing agents to the transport of metals to roots. Soil Sci Soc Am Proc 33:68–75

    Article  Google Scholar 

  • Hodgson JF, Geering HR, Norvell WA (1965) Micronutrient cation complexes in soil solution: partition between complexed and uncomplexed forms by solvent extraction. Soil Sci Soc Am Proc 29:665–669

    Article  CAS  Google Scholar 

  • Homer FA, Morrison RS, Brooks RR, Clemens J, Reeves RD (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138(2):195–205

    Article  CAS  Google Scholar 

  • Iu KL, Pulford ID, Duncan HJ (1982) Influence of soil waterlogging on subsequent plant growth and trace metal content. Plant Soil 66:423–427

    Article  CAS  Google Scholar 

  • Kapustka LA, Eskew D, Yocum JM (2006) Plant toxicity testing to derive ecological soil screening levels for cobalt and nickel. Environ Toxicol Chem 25(3):865–874

    Article  CAS  PubMed  Google Scholar 

  • Klessa DA, Dixon J, Voss RC (1989) Soil and agronomic factors influencing the cobalt content of herbage. Res Dev Agric 6(1):25–35

    Google Scholar 

  • Kubota J, Lemon ER, Allaway WH (1963) The effect of soil moisture content upon the uptake of molybdenum, copper, and cobalt by alsike clover. Soil Sci Soc Am Proc 27:679–683

    Article  CAS  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102

    Article  CAS  PubMed  Google Scholar 

  • Larsen S (1952) The use of P32 in studies on the uptake of phosphorus by plants. Plant Soil 4(1):1–10

    Article  CAS  Google Scholar 

  • Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    Article  CAS  Google Scholar 

  • Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. NZ J Agric Res 47(1):33–43

    CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75(7):979–986. doi:10.1016/j.chemosphere.2008.12.068

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu J, Reid RJ, Smith FA (2000) The mechanism of cobalt toxicity in mung beans. Physiol Plant 110:104–110

    Article  CAS  Google Scholar 

  • Malaisse F, Brooks RR, Baker AJM (1994) Diversity of vegetation communities in relation to soil heavy metal content at the Shinkolobwe copper cobalt uranium mineralization, Upper Shaba, Zaire. Belg J Bot 127(1):3–16

    Google Scholar 

  • Malaisse F, Baker AJM, Ruelle S (1999) Diversity of plant communities and leaf heavy metal content at Luiswishi copper/cobalt mineralization, Upper Katanga, Dem. Rep. Congo. Biotechnol Agron Soc Environ 3(2):104–114

    Google Scholar 

  • Malik M, Chaney RL, Brewer EP, Li Y-M, Angle JS (2000) Phytoextraction of soil cobalt using hyperaccumulator plants. Int J Phytorem 2(4):319–329

    Article  CAS  Google Scholar 

  • McLaren RG, Williams JG (1981) Effects of adding chelated and non-chelated copper and cobalt to a deficient soil on the content of these nutrients in clover and ryegrass. J Sci Food Agric 32(2):181–186

    Article  CAS  Google Scholar 

  • McLaren RG, Lawson DM, Swift RS (1986) The forms of cobalt in some Scottish soils as determined by extraction and isotopic exchange. J Soil Sci 37(2):223–234

    Article  CAS  Google Scholar 

  • McLaren RG, Lawson DM, Swift RS (1987) The availability to pasture plants of native and applied soil cobalt in relation to extractable soil cobalt and other soil properties. J Sci Food Agric 39(2):101–112

    Article  CAS  Google Scholar 

  • McLaren RG, Black A, Clucas LM (2010) Changes in Cu, Ni, and Zn availability following simulated conversion of biosolids-amended forest soils back to agricultural use. Aust J Soil Res 48(3):286–293. doi:10.1071/sr09138

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Smolders E, Merckx R, Maes A (1997) Plant uptake of Cd and Zn in chelator-buffered nutrient solution depends on ligand type. In: Ando T (ed) Plant nutrition—for sustainable food production and environment. Kluwer, Dordrecht, pp 113–117

    Google Scholar 

  • Merckx R, van Ginkel JH, Sinnaeve J, Cremers A (1986) Plant-induced changes in the rhizosphere of maize and wheat. II. Complexation of cobalt, zinc and manganese in the rhizosphere of maize and wheat. Plant Soil 96:95–107

    Article  CAS  Google Scholar 

  • Mico C, Li HF, Zhao FJ, McGrath SP (2008) Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils. Environ Pollut 156(3):883–890. doi:10.1016/j.envpol.2008.05.017

    Article  CAS  PubMed  Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz P, Aronson M, Merriam GR (1981) The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba Province, Zaire. Phytochemistry 20:455–458

    Article  CAS  Google Scholar 

  • Nicolls KD, Honeysett JL (1964) The cobalt status of Tasmanian soils. I. Total cobalt in soils, and cobalt content of subterranean clover grown in pots. Aust J Agric Res 15:368–376

    Article  CAS  Google Scholar 

  • Nolan AL, Zhang H, McLaughlin MJ (2005) Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. J Environ Qual 34(2):496–507

    Article  CAS  PubMed  Google Scholar 

  • O’Connor GA (1988) Use and misuse of the DTPA soil test. J Environ Qual 17:715–718

    Article  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Paterson JE, Klessa DA, Macpherson A (1991) An investigation into the methods of improving the cobalt status of soil, herbage and grazing ruminants and its field assessment. Livest Prod Sci 28(2):139–149

    Article  Google Scholar 

  • Pinkerton BW, Brown KW (1985) Plant accumulation and soil sorption of cobalt from cobalt-amended soils. Agron J 77:634–638

    Article  CAS  Google Scholar 

  • Price NO, Linkous WN, Engel RW (1955) Minor element content of forage plants and soils. J Agr Food Chem 3(3):226–229

    Article  CAS  Google Scholar 

  • Quantin C, Becquer T, Rouiller JH, Berthelin J (2001) Oxide weathering and trace metal release by bacterial reduction in a New Caledonia Ferralsol. Biogeochemistry 53:323–340

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goias state, Brazil. Plant Soil 293(1–2):107–119. doi:10.1007/s11104-007-9192-x

    Article  CAS  Google Scholar 

  • Reisenauer HM (1960) Cobalt in nitrogen fixation by a legume. Nature 186:375–376

    Article  CAS  Google Scholar 

  • Riley IT, Dilworth MJ (1982) Cobalt and the contribution of crown and lateral nodules to nitrogen-fixation of Lupinus-angustifolius L. New Phytol 90(4):717–721

    Article  CAS  Google Scholar 

  • Riley IT, Dilworth MJ (1985a) Cobalt requirement for nodule development and function in Lupinus-angustifolius L. New Phytol 100(3):347–359

    Article  CAS  Google Scholar 

  • Riley IT, Dilworth MJ (1985b) Cobalt status and its effects on soil populations of Rhizobium lupini, rhizosphere colonization and nodule initiation. Soil Biol Biochem 17(1):81–85

    Article  CAS  Google Scholar 

  • Riley IT, Dilworth MJ (1985c) Recovery of cobalt-deficient root-nodules in Lupinus-angustifolius L. New Phytol 100(3):361–365

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Clothier BE (1999a) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot 84(6):689–694

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Hedley MJ (1999b) Cobalt and nickel accumulation in Nyssa (tupelo) species and its significance for New Zealand agriculture. NZ J Agric Res 42(3):235–240

    CAS  Google Scholar 

  • Robson AD, Mead GR (1980) Seed cobalt in Lupinus-Angustifolius. Aust J Agric Res 31(1):109–116

    Article  CAS  Google Scholar 

  • Robson AD, Snowball K (1987) Response of narrow-leafed lupins to cobalt application in relation to cobalt concentration in seed. Aust J Exp Agric 27(5):657–660

    Article  CAS  Google Scholar 

  • Robson AD, Dilworth MJ, Chatel DL (1979) Cobalt and nitrogen-fixation in Lupinus-angustifolius L.1. Growth, nitrogen concentrations and cobalt distribution. New Phytol 83(1):53–62

    Article  CAS  Google Scholar 

  • Rogers RD, Williams SE (1986) Vesicular arbuscular mycorrhiza—influence on plant uptake of cesium and cobalt. Soil Biol Biochem 18(4):371–376

    Article  CAS  Google Scholar 

  • Rosbrook PA, Asher CJ, Bell LC (1992) The cobalt status of Queensland soils in relation to pasture growth and cobalt accumulation. Trop Grassl 26(2):130–136

    Google Scholar 

  • Sanders JR (1983) The effect of pH on the total and free ionic concentrations of manganese, zinc and cobalt in soil solutions. J Soil Sci 34:315–323

    Article  CAS  Google Scholar 

  • Sherrell CG (1990a) Effect of cobalt application on the cobalt status of pastures. 2. Pastures without previous cobalt application. NZ J Agric Res 33(2):305–311

    CAS  Google Scholar 

  • Sherrell CG (1990b) Effect of cobalt application on the cobalt status of pastures. 3. Comparison of chelate and sulfate as cobalt sources for topdressing deficient pastures. NZ J Agric Res 33(2):313–317

    CAS  Google Scholar 

  • Sherrell CG, Percival NS, Gee TM (1990) Effect of cobalt application on the cobalt status of pastures. 1. Pastures with history of regular cobalt application. NZ J Agric Res 33(2):295–304

    CAS  Google Scholar 

  • Smith KA (1990) Manganese and cobalt. In: Alloway BJ (ed) Heavy metals in soils. Blackie, London, pp 197–221

    Google Scholar 

  • Suzuki H, Kumagai H, Oohashi K, Sakamoto K, Inubushi K, Enomoto S (2001) Transport of trace elements through the hyphae of an arbuscular mycorrhizal fungus into marigold determined by the multitracer technique. Soil Sci Plant Nutr 47(1):131–137

    CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN, Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162:381–388

    Article  CAS  Google Scholar 

  • Tiller K (1978) Applications of isotopes to micronutrient studies. In: Isotopes and radiation in research on soil-plant relationships: proceedings of an international symposium on the use of isotopes and radiation in research on soil-plant relationships. Jointly organized by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations. Colombo, Sri Lanka, 11–15 December 1978. pp 359–371

  • Tiller KG, Honeysett JL, Hallsworth EG (1969) The isotopically exchangeable form of native and applied cobalt in soils. Aust J Soil Res 7:43–56

    Article  CAS  Google Scholar 

  • Wallace A, Mueller TR (1973) Effects of chelated and nonchelated cobalt and copper on yields and microelement composition of bush beans grown on calcareous soil in a glasshouse. Soil Sci Soc Am Proc 37:907–908

    Article  CAS  Google Scholar 

  • Wendling LA, Kirby JK, McLaughlin MJ (2009) Aging effects on cobalt availability in soils. Environ Toxicol Chem 28(8):1609–1617

    Article  CAS  PubMed  Google Scholar 

  • Wilson SB, Hallsworth EG (1965) Studies on the nutrition of the forage legumes IV. the effect of cobalt on the growth of nodulated and non-nodulated Trifolium subterraneum L. Plant Soil 22(2):260–279

    Article  CAS  Google Scholar 

  • Wilson DO, Reisenauer HM (1963) Cobalt requirement of symbiotically grown alfalfa. Plant Soil 19(3):364–373

    Article  Google Scholar 

  • Woodard TL, Thomas RJ, Xing BS (2003) Potential for phytoextraction of cobalt by tomato. Commun Soil Sci Plant Anal 34(5–6):645–654

    Article  CAS  Google Scholar 

  • Wright JR, Lawton K (1954) Cobalt investigations on some Nova Scotia soils. Soil Sci 77:95–105

    Article  CAS  Google Scholar 

  • Zhang H, Zhao FJ, Sun B, Davison W, McGrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35(12):2602–2607

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lombi E, Smolders E, McGrath S (2004) Kinetics of Zn release in soils and prediction of Zn concentration in plants using diffusive gradients in thin films. Environ Sci Technol 38(13):3608–3613

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Rooney CP, Zhang H, McGrath SP (2006) Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants. Environ Toxicol Chem 25(3):733–742

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Collins.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, R.N., Kinsela, A.S. Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339, 499–512 (2011). https://doi.org/10.1007/s11104-010-0584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0584-y

Keywords

Navigation