Skip to main content

Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media

Abstract

The impact of additions (1–5% by weight) of a nutrient-poor, wood-derived biochar on pepper (Capsicum annuum L.) and tomato (Lycopersicum esculentum Mill.) plant development and productivity in a coconut fiber:tuff growing mix under optimal fertigation conditions was examined. Pepper plant development in the biochar-treated pots was significantly enhanced as compared with the unamended controls. This was reflected by a system-wide increase in most measured plant parameters: leaf area, canopy dry weight, number of nodes, and yields of buds, flowers and fruit. In addition to the observed increases in plant growth and productivity, the rhizosphere of biochar-amended pepper plants had significantly greater abundances of culturable microbes belonging to prominent soil-associated groups. Phylogenetic characterization of unique bacterial isolates based on 16S rRNA gene analysis demonstrated that of the 20 unique identified isolates from roots and bulk soil from the char-amended growing mix, 16 were affiliated with previously described plant growth promoting and/or biocontrol agents. In tomato, biochar treatments positively enhanced plant height and leaf size, but had no effect on flower and fruit yield. The positive impacts of biochar on plant response were not due to direct or indirect effects on plant nutrition, as there were no differences between control and treatments in leaf nutrient content. Nor did biochar affect the field capacity of the soilless mixture. A number of organic compounds belonging to various chemical classes, including n-alkanoic acids, hydroxy and acetoxy acids, benzoic acids, diols, triols, and phenols were identified in organic solvent extracts of the biochar. We conjecture two related alternatives to explain the improved plant performance under biochar treatment: (i) the biochar stimulated shifts in microbial populations towards beneficial plant growth promoting rhizobacteria or fungi, due to either chemical or physical attributes of the biochar; or (ii) low doses of biochar chemicals, many of which are phytotoxic or biocidal at high concentrations, stimulated plant growth at low doses (hormesis).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adams P (2002) Nutritional control in hydroponics. In: Savvas D, Passam HC (eds) Hydroponic production of vegetables and ornamentals. Embryo, Athens, pp 211–262

    Google Scholar 

  • Bruun S, Luxhoi J (2008) Is biochar production really carbon-negative? Environ Sci Technol 42:1388–1388

    CAS  Article  PubMed  Google Scholar 

  • Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Poll 157:42–48

    CAS  Article  Google Scholar 

  • Cedergreen N, Felby C, Porter JR, Streibig JC (2009) Chemical stress can increase crop yield. Field Crops Res 114:54–57

    Article  Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biotechnol 25:1919–1928

    Article  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Austral J Soil Res 45:629–634

    CAS  Article  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Austral J Soil Res 46:437–444

    Article  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    CAS  Article  PubMed  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    CAS  Article  PubMed  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Bena G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189

    CAS  Article  Google Scholar 

  • Cytryn E, Minz D, Gieseke A, Van Rijn J (2006) Transient development of filamentous Thiothrix species in a marine sulfide oxidizing, denitrifying fluidized bed reactor. FEMS Microbiol Lett 256:22–29

    CAS  Article  PubMed  Google Scholar 

  • Dhingra OD, Sinclair JB (1986) Basic plant pathology methods. CRC, Boca Raton

    Google Scholar 

  • Digman B, Joo HS, Kim DS (2009) Recent progress in gasification/pyrolysis technologies for biomass conversion to energy. Environ Prog Sustain Energy 28:47–51

    CAS  Article  Google Scholar 

  • Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Manero J (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51:245–258

    CAS  Article  Google Scholar 

  • Duponnois R, Ba AM, Mateille T (1999) Beneficial effects of Enterobacter cloacae and Pseudomonas mendocina for biocontrol of Meloidogyne incognita with the endospore-forming bacterium Pasteuria penetrans. Nematology 1:95–101

    Google Scholar 

  • Dutta S, Mishra AK, Kumar BSD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    CAS  Article  Google Scholar 

  • Elad Y, Baker R (1985) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology 75:1053–1059

    CAS  Article  Google Scholar 

  • Elad Y, Chet I, Henis Y (1981) Biological control of Rhizoctonia solani in strawberry fields by Trichoderma harzianum. Plant Soil 60:245–254

    Article  Google Scholar 

  • Elad Y, Rav David D, Meller Harel Y, Borenshtein M, Ben Kalifa H, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  PubMed  Google Scholar 

  • Ezziyyani M, Requena ME, Egea-Gilabert C, Candela ME (2007) Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Phytopathology J 6:342–349

    Article  Google Scholar 

  • Garcia JAL, Probanza A, Ramos B, Palomino MR, Manero FJG (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24:169–176

    Article  Google Scholar 

  • Ghosh SP, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Phys Biochem 41:277–281

    CAS  Article  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fert Soils 35:219–230

    CAS  Article  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    CAS  Article  Google Scholar 

  • Guo Y, Bustin RM (1998) FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. Int J Coal Geol 37:29–53

    CAS  Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3:307–319

    CAS  Article  Google Scholar 

  • Harman GE, Howell CR, Vitebro RA, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  Article  PubMed  Google Scholar 

  • Ho WC, Ko WH (1980) A simple medium for selective isolation and enumeration of soil actinomycetes. Ann Phytopatho Soc Jpn 46:634–638

    Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171

    CAS  Article  PubMed  Google Scholar 

  • Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microb Ecol 50:73–81

    Article  PubMed  Google Scholar 

  • Iswaran V, Jauhri KS, Sen A (1980) Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191–192

    Article  Google Scholar 

  • Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicides and fungal biofertilizers. Fungal Diversity 38:25–50

    Google Scholar 

  • Kane MD, Poulsen LK, Stahl DA (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16s ribosomal-RNA sequences. Appl Environ Microbiol 59:682–686

    CAS  PubMed  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    CAS  Article  PubMed  Google Scholar 

  • Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. Int Achieve Future 5:12–23

    Google Scholar 

  • Kloepper JW, Ruy CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  Article  PubMed  Google Scholar 

  • Kohler J, Caravaca F, Roldan A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    CAS  Article  Google Scholar 

  • Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur J Plant Pathol 107:523–533

    CAS  Article  Google Scholar 

  • Krull E, Baldock JA, Skjemstad J, Smernik R (2009) Characteristics of biochar: Organo-chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 53–66

    Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Article  Google Scholar 

  • Laird DA, Fleming PD, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma in press: Geoderma doi:10.1016/j.geoderma.2010.1005.1013

  • Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Internat 31:575–584

    CAS  Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, pp 115–175

    Google Scholar 

  • Laskaris P, Tolba S, Calvo-Bado L, Wellington L (2010) Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol 12:783–796

    CAS  Article  PubMed  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J, Pereira da Silva J Jr, Steiner C, Nehls T, Zec W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    CAS  Article  Google Scholar 

  • Li B, G-l X, Soad A, Coosemans J (2005) Suppression of Meloidogyne javanica by antagonistic and plant growth-promoting rhizobacteria. J Zhejiang Univ Sci 6:496–501

    Article  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    CAS  Article  Google Scholar 

  • Lim JH, Kim SD (2009) Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. J Kor Soc Appl Biol Chem 52:531–538

    CAS  Article  Google Scholar 

  • Liu DL, An M, Johnson IR, Lovett JV (2003) Mathematical modeling of allelopathy. III. A model for curve-fitting allelochemical dose responses. Nonlinearity Biol Toxicol Med 1:37–50

    Article  Google Scholar 

  • Liu YH, Huang CJ, Chen CY (2008) Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology 98:830–836

    CAS  Article  PubMed  Google Scholar 

  • Mathews JA (2008) Carbon-negative biofuels. Energy Policy 36:940–945

    Article  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    CAS  Article  PubMed  Google Scholar 

  • Migliore L, Rotini A, Cerioli NL, Cozzolino S, Fiori M (2010) Phytotoxic antibiotic sulfadimethoxine elicts a complex hormetic response in the weed Lythrum Salicaria L. Dose-Response 8

  • Moore LW (1988) Use of Agrobacterium radiobacter in agricultural ecosystems. Microbiol Sci 5:92–95

    CAS  PubMed  Google Scholar 

  • Muyzer G, Brinkhoff T, Nubel U, Santegoeds C, Schafer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, Elsas JD, Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 1–27

    Google Scholar 

  • Nodwell JR (2007) Novel links between antibiotic resistance and antibiotic production. J Bacteriol 189:3683–3685

    CAS  Article  PubMed  Google Scholar 

  • Pereira P, Nesci A, Etcheverry M (2009) Impact of two bacterial biocontrol agents on bacterial and fungal culturable groups associated with the roots of field-grown maize. Lett Appl Microbiol 48:493–499

    CAS  Article  PubMed  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek L (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    CAS  Article  PubMed  Google Scholar 

  • Pietikainen J, Kiikkila O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    CAS  Article  Google Scholar 

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337

    CAS  PubMed  Google Scholar 

  • Prithiviraj B, Perry LG, Badri DV, Vivanco JM (2007) Chemical facilitation and induced pathogen resistance mediated by a root-secreted phytotoxin. New Phytol 173:852–860

    CAS  Article  PubMed  Google Scholar 

  • Raddadi N, Cherif A, Boudabous A, Daffonchio D (2008) Screening of plant growth promoting traits of Bacillus thuringiensis. Ann Microbiol 58:47–52

    CAS  Article  Google Scholar 

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fert Soils 43:699–708

    Article  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    CAS  Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    CAS  Article  PubMed  Google Scholar 

  • Sonneveld C (2002) Composition of nutrient solutions. In: Savvas D, Passam HC (eds) Hydroponic production of vegetables and ornamentals. Embryo, Athens, pp 179–210

    Google Scholar 

  • Srinath J, Bagyaraj DJ, Satyanarayana BN (2003) Enhanced growth and nutrition of micropropagated Ficus benjamina to Glomus mosseae co-inoculated with Trichoderma harzianum and Bacillus coagulans. World J Microbiol Biotechnol 19:69–72

    CAS  Article  Google Scholar 

  • Srinivasan K, Mathivanan N (2009) Biological control of sunflower necrosis virus disease with powder and liquid formulations of plant growth promoting microbial consortia under field conditions. Biol Cont 51:395–402

    Article  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    CAS  Article  Google Scholar 

  • Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

    CAS  Article  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    CAS  Article  PubMed  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

  • Velini ED, Alves E, Godoy MC, Meschede DK, Souza RT, Duke SO (2008) Glyphosate applied at low doses can stimulate plant growth. Pest Manag Sci 64:489–496

    CAS  Article  PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    CAS  Article  PubMed  Google Scholar 

  • Wang QG, Garrity M, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  Article  PubMed  Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426

    Article  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20

    CAS  Article  Google Scholar 

  • Yoon JH, Cho YG, Lee ST, Suzuki K, Nakase T, Park YH (1999) Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. Int J Syst Bacteriol 49:675–680

    CAS  Article  PubMed  Google Scholar 

  • Zhang S, Reddy MS, Kokalis-Burelle N, Wells LW, Nightengale SP, Kloepper JW (2001) Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Dis 85:879–884

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research was funded in part by Autonomous Province of Trento, Call for Proposal Major Projects 2006, Project ENVIROCHANGE, and in part by The Chief Scientist of the Ministry of Agriculture and Rural Development, Israel, Climate Change Research. The authors acknowledge the help of Mr. Ran Shulhani in establishing experiments and treating plants. Comments of the reviewers contributed substantially to the presentation of these results, and they are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen R. Graber.

Additional information

Responsible Editor: Jorge Vivanco.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graber, E.R., Meller Harel, Y., Kolton, M. et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337, 481–496 (2010). https://doi.org/10.1007/s11104-010-0544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0544-6

Keywords

  • Soilless media
  • Biochar
  • Pepper
  • Tomato
  • Plant growth promotion
  • PGPR
  • PGPF
  • Tar
  • Intensive agriculture
  • Fertigation
  • Plant productivity
  • Hormesis
  • Biocontrol
  • Antibiotics
  • Bacterial isolates