Skip to main content

Advertisement

Log in

Seasonal physiological responses of Argania spinosa tree from Mediterranean to semi-arid climate

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Argania spinosa (the argan tree) is a slow-growing tree endemic of Morocco, growing on semi-arid areas where no other tree species can live. With the aim of predicting temporal changes in A. spinosa woodlands under a probable increase in aridity, we set off to investigate these questions: how do A. spinosa physiological attributes respond to variations in climatic conditions and seasonality, and which is the set of attributes that most affects tree response to environmental conditions? In three study sites, Beni Snassen (North), High-Atlas (Mountain) and Admine Forest in Agadir (Coastal), gas exchange measurements, photochemical efficiency, leaf water potential and different leaf attributes were monitored in February, July and November of 2006. The Mountain site presents the most continental climate. Trees in this site were the most stressed in summer, having the lowest midday leaf water potential values, photochemical efficiency and assimilation rates. We found a Ψmd threshold around -4 MPa, below which stomatal conductance responds linearly to Ψmd. Plants from the North area never reached this threshold during the study period. Although leaf pigments presented a clear seasonal pattern, leaves from Coastal trees exhibit the highest content for each season. The three study sites were separated by two discriminate functions obtained by canonical discriminant analysis. In summer, the Mountain population is separated from the other sites mainly by assimilation rate and Fv/Fm, while in winter transpiration rates and chlorophyll content are the main discriminant variables. Our study shows that A. spinosa trees adjust their physiological status and leaf attributes to environmental conditions allowing plants to thrive under a dry climate. Under a scenario of global change, the distribution of the argan tree likely shifts to milder areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A:

CO2 assimilation rate

gs :

Stomatal conductance

E:

Evapotranspiration rate

PPFD:

Photosynthetic photon flux density

Fv/Fm :

Maximal PSII quantum yield

ΦPSII :

Effective PSII quantum yield

RWC:

Relative water content

LDMC:

Leaf dry matter content

LMA:

Leaf mass area

PET:

Potential evapotranspiration

VPD:

Vapour pressure deficit

CDA:

Canonical discriminant analysis

Ψmd :

Midday leaf water potential

References

  • Alados CL, El Aich A (2008) Stress assessment of argan (Argania spinosa L. Skeels) in response to land use across an aridity gradient: translational asymmetry and branch fractal dimension. J Arid Environ 72:338–349

    Article  Google Scholar 

  • Ain-Lhout F, Zunzunegui M, Tirado R, Clavijo A, Díaz-Barradas MC, García Novo F (2001) Comparison of proline accumulation in two Mediterranean scrubs subject to natural and experimental water deficit. Plant Soil 230:175–183

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benabid A (1982) Bref aperçu sur la zonation altitudinale de la végétation climacique du Maroc. Ecol Med VIII(1–2):301–315

    Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG (2005) Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees. Trees 19:296–304

    Article  Google Scholar 

  • Charrouf Z, Guillaume D (1998) Ethnoeconomical, ethnomedical and phytochemical study of Argania spinosa (L.) Skeels: a review. J Ethno farm 67:7–14

    Google Scholar 

  • Charrouf Z, Guillaume D (2002) Secondary metabolites from Argania spinosa (L.) Skeels. Phytoch Rev 1:345–354

    Article  CAS  Google Scholar 

  • Choat B, Ball MC, Luly JG, Holtum JAM (2005) Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19:305–311

    Article  Google Scholar 

  • Collier A, Lemaire B (1974) Etude des caroténoïdes de l'huile d'argan. Cah Nutr Diét 9:300–301

    CAS  Google Scholar 

  • Connor DJ (2005) Adaptation of olive (Olea europaea L.) to water-limited environments. Aust J Agr Res 56:1181–1189

    Article  Google Scholar 

  • Correia O, Díaz-Barradas MC (2000) Ecophysiological differences between male and female plants of Pistacia lentiscus L. Plant Ecol 149:131–142

    Article  Google Scholar 

  • Díaz-Espejo A, Walcroft AS, Fernandez JE, Hafidi B, Palomo MJ, Giron IF (2006) Modelling photosynthesis in olive leaves under drought conditions. Tree Physiol 26:1445–1456

    PubMed  Google Scholar 

  • Díaz-Espejo A, Nicolás E, Fernández JE (2007) Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant Cell Environ 30:922–933

    Article  PubMed  Google Scholar 

  • Dindane K, Bouchaou L, Hsissou Y, Krimissa M (2003) Hydrochemical and isotopic characteristics of groundwater in the Souss Upstream Basin, southwestern Morocco. J Afr Earth Sci 36:315–327

    Article  CAS  Google Scholar 

  • El Aboudi A (1990) Typologie des Arganeraies Inframéditerranéenes et Écophysiologie de l’Arganier (Argania spinosa (L.) Skeels) dans le Souss (Maroc). Dissertation. Université Joseph Fourier, Grenoble, France

  • El Aich, El Assouli N, Fathi A, Monrad-Fehr P, Bourbouze A (2005) Ingestive behaviour of grazing goats in the southwestern argan forest of Morocco. Ref. RUMIN 1034

  • El Yousfi SM (1988) La dégradation forestière dans le sud marocain: exemple de l’arganeraie d’Admine (Souss) entre 1969 et 1986. Mémoire de 3ème cycle Agronomie. Institut Agronomique et Vétérinaire Hassan II. Rabat

  • Fernández JE, Diaz-Espejo A, D'Andria R, Sebastiani L, Tognetti R (2008) Potential and limitations of improving olive orchard design and management through modelling. Plant Biosyst 142:130–137

    Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and dry matter content. Funct Ecol 15:688–695

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Bioch Bioph Acta 990:87–92

    CAS  Google Scholar 

  • Gouveia AC, Freitas H (2008) Intraspecific competition and water use efficiency in Quercus suber: evidence of an optimum tree density? Trees 22:521–530

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Applied Engrg Agric 1:96–99

    Google Scholar 

  • Hsissou Y, Mudry J, Mania J, Bouchaou L, Chauve P (1997) Dynamique et salinité de la nappe côtière d’Agadir (Maroc), influence du biseau salé et des faciès évaporitiques. In: Hydrochemistry Proceedings of the Rabat Symposium. International Association of Hydrological Sciences (IAHS), pp. 73–82. IAHS, Publication No. 244

  • Jones HG (1983) Plants and microclimate. A quantitative approach to environmental plant physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kozlowski TT (2002) Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management. For Ecol Manage 158:195–221

    Article  Google Scholar 

  • Lansac AR, Zaballos JP, Martín A (1994) Seasonal water potential changes and proline accumulation in Mediterranean shrubland species. Vegetatio 113:141–154

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, New York

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Academic, New York

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Mediavilla S, Escudero A (2003) Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. Tree Physiol 14:987–996

    Google Scholar 

  • M’Hirit O, Benzyane M, Benchekroum F, El Yousfi SM, Bendaanoun M (1998) L’arganier: une espèce forestière à usages multiples. Mardaga, Belgique

    Google Scholar 

  • Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Cescatti A, Rodeguiero M, Tosens T (2006) Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 29:1159–1178

    Article  CAS  PubMed  Google Scholar 

  • Peltier JP, Carlier G, Elaboudi A (1990) Daily water-uptake of argan tree leaves, Argania spinosa (L) skeels, in an arid bioclimate with strong oceanic influence (Souss plains, Morocco). Acta Oecol 11:643–668

    Google Scholar 

  • Peñuelas J, Gordon C, Llorens L, Nielsen T, Tietema A, Beier C, Bruna P, Emmett B, Estiarte M, Gorissen A (2004) Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons and species in a North-South European gradient. Ecosystems 7:598–612

    Article  Google Scholar 

  • Reda Tazi MR, Berrichi A, Haloui B (2003) Ésquisse cartographique de l’aire de l’arganier Argania spinosa (L.) Skeels au Maroc nord-oriental. Bulletin de l’Institut scientifique. Rabat. Section Science de la Vie 25:53–55

    Google Scholar 

  • Saura-Mas S, Lloret F (2007) Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Ann Bot 99:545–554

    Article  CAS  PubMed  Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manage 132:97–109

    Article  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammner C (1995) Assesment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–220

    Article  CAS  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Tenhunen JD, Beyschlag W, Lange OL, Harley PC (1987) Changes during summer drought in leaf CO2 uptake rates of macchia shrubs growing in Portugal: Limitations due to photosynthetic capacity, carboxylation, efficiency, and stomatal conductance. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress, NATO ASI Series Vol. G15. Springer, Heidelberg, pp 305–327

    Google Scholar 

  • Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant Cell Environ 24:27–40

    Article  CAS  Google Scholar 

  • Zunzunegui M, Díaz Barradas MC, García Novo F (2000) Different phenotypic response of Halimium halimifolium in relation to groundwater availability. Plant Ecol 148:165–174

    Article  Google Scholar 

  • Zunzunegui M, Díaz-Barradas MC, Ain-Lhout F, Clavijo A, García Novo F (2005) To live or to survive in Doñana dunes: Adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89

    Article  CAS  Google Scholar 

  • Zunzunegui M, Ain-Lhout F, Jáuregui J, Díaz-Barradas MC, Boutaleb S, Álvarez-Cansino L, Esquivias MP (2010) Fruit production under different environmental and management conditions of argan, Argania spinosa (L.). J Arid Env. doi:10.1016/j.jaridenv.2010.03.016

    Google Scholar 

Download references

Acknowledgement

This research was supported by a project from the Spanish Agence of International Cooperation (AECI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Cruz Díaz-Barradas.

Additional information

Responsible Editor: John McPherson Cheeseman.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 3089 kb)

ESM 2

(JPEG 2137 kb)

ESM 3

(JPEG 2399 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Barradas, M.C., Zunzunegui, M., Ain-Lhout, F. et al. Seasonal physiological responses of Argania spinosa tree from Mediterranean to semi-arid climate. Plant Soil 337, 217–231 (2010). https://doi.org/10.1007/s11104-010-0518-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0518-8

Keywords

Navigation