Skip to main content
Log in

Soil C and N dynamics within a precipitation gradient in Mediterranean eucalypt plantations

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Soil C and N dynamics were evaluated in five eucalypt plantations within a precipitation gradient (500–2,000 mm) in Portugal. Soil physical and chemical properties, total and labile (particulate organic matter, hydrolyzable, hot water soluble and microbial) soil C and N pools, and C and N mineralization were measured to characterize the C and N dynamics and their controlling factors within this gradient. Contents of total and labile soil organic C and N were positively correlated with the mean annual precipitation. A similar relationship was observed for net N mineralization (anaerobic and long-term aerobic incubation), gross N mineralization (15N isotope dilution technique) and C mineralization. In contrast, rates of C and N mineralization (per unit of C and N) were higher in the driest sites due to their higher proportion of particulate organic matter C. Net and gross N mineralization were strongly correlated and showed similar controlling factors (mean annual precipitation, total and labile C and N and extractable P contents), suggesting that net N mineralization during long-term aerobic incubation reflects gross N transformations. Although, gross NO3–N production and gross NO3–N immobilization were observed in all sites, net nitrification in the drier sites was not observed in the first weeks of the study. Our results suggest that, under Mediterranean conditions, mean annual precipitation is the major factor determining the C and N dynamics in soils with Eucalyptus plantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams MA, Attiwill PM (1986) Nutrient cycling and nitrogen mineralization in eucalypt forests of southeastern Australia. II. Indices of nitrogen mineralization. Plant Soil 92:341–362. doi:10.1007/BF02372483

    Article  CAS  Google Scholar 

  • Adams MA, Attiwill PM, Polglase PJ (1989) Availability of nitrogen and phosphorus in forest soils in northeastern Tasmania. Biol Fertil Soils 8:212–218. doi:10.1007/BF00266481

    Article  Google Scholar 

  • Ahn M-Y, Zimmerman AR, Comerford NB, Sickman JO, Grunwald S (2009) Carbon mineralization and labile organic carbon pools in the sandy soils of a North Florida watershed. Ecosystems 12:672–685. doi:0.1007/s10021-009-9250-8

    Article  CAS  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582

    Article  CAS  Google Scholar 

  • Attiwill PM, Polglase PJ, Weston CJ, Adams MA (1996) Nutrient cycling in forests of south-eastern Australia. In: Attiwill PM, Adams MA (eds) Nutrition of eucalypts. CSIRO, Australia, pp 191–227

    Google Scholar 

  • Austin AT, Sala OE (2002) Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina. J Veg Sci 13:351–360

    Article  Google Scholar 

  • Bauhus J, Khanna PK, Raison RJ (1993) The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil. Aust J Soil Res 31:621–39. doi:10.1071/SR9930621

    Article  CAS  Google Scholar 

  • Berg B, Berg M, Bottner P et al (1993) Litter mass loss in pine forests of Europe and Eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry 20:127–153. doi:10.1007/BF00000785

    Article  Google Scholar 

  • Bernhard-Reversat F (1996) Nitrogen cycling in tree plantations grown on a poor sandy savanna soil in Congo. Appl Soil Ecol 4:161–172. doi:10.1016/0929-1393(96)00096-0

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Burton J, Chen Ch XuZ, Ghadiri H (2007) Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biol Biochem 39:426–433. doi:10.1016/j.soilbio.2006.08.011

    Article  CAS  Google Scholar 

  • Couto-Vázquez A, González-Prieto SJ (2006) Short- and medium- term effects of three fire fighting chemicals on the properties of a burnt soil. Sci Total Environ 371:353–361. doi:10.1016/j.scitotenv.2006.08.016

    Article  PubMed  Google Scholar 

  • Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156. doi:10.2307/1940665

    Article  Google Scholar 

  • DGCN (2000) Tercer Inventario Forestal Nacional 1997–2006. Ministerio de Medio Ambiente, Dirección General de Conservación de la Naturaleza. Madrid

  • Douglas CL, Rasmussen PE, Collins HP, Albrecht SL (1998) Nitrogen mineralization across a climosequence in the pacific northwest. Soil Biol Biochem 30:1765–1772. doi:10.1016/S0038-0717(98)00031-5

    Article  CAS  Google Scholar 

  • Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoff-zustandes der Böden. II Chemische Extraktionmethod zur Phosphor-und Kaliumbestimmung. Kungl Lantbr Högsk Ann 26:199

    Google Scholar 

  • Ellis RC, Pennington PI (1989) Nitrification in soils of secondary vegetational successions from Eucalytpus forest and grassland to cool temperate rainforest in Tasmania. Plant Soil 115:59–73. doi:10.1007/BF02220695

    Article  CAS  Google Scholar 

  • Fabião A, Madeira M, Steen E (1987) Root mass in plantations of Eucalyptus globulus in Portugal in relation to soil characteristics. Arid Soil Res Rehab 1:185–194. doi:10.1080/15324988709381143

    Google Scholar 

  • Falkiner RA, Khanna PK, Raison RJ (1993) Effect of superphosphate addition on N mineralization in some Australian forest soils. Aust J Soil Res 31:285–96. doi:10.1071/SR9930285

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Haney RL, Honeycutt CW, Arshad MA, Schomberg HH, Hons FM (2001) Climatic influences on active fractions of soil organic matter. Soil Biol Biochem 33:1103–1111. doi:10.1016/S0038-0717(01)00016-5

    Article  CAS  Google Scholar 

  • Garcia-Montiel DC, Binkley D (1998) Effect of Eucalytpus saligna and Albizia falcataria on soil processes and nitrogen supply in Hawaii. Oecologia 113:547–556. doi:10.1080/15324988709381143

    Article  Google Scholar 

  • Garcia-Pausas J, Casals P, Camarero L, Huguet C, Thompson R, Sebastiá MT, Romanyá J (2008) Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands. Soil Biol Biochem 40:2803–2810. doi:10.1016/j.soilbio.2008.08.001

    Article  CAS  Google Scholar 

  • Gómez-Rey MX, Vasconcelos E, Madeira M (2007) Lysimetric study of eucalypt residue management effects on N leaching and mineralization. Ann For Sci 64:699–706. doi:10.1051/forest:2007050

    Article  Google Scholar 

  • Gonçalves JLM, Serrano MIP, Mendes KCF, Gava JL (1999) Effects of site management in a Eucalyptus grandis plantation in the humid tropic: São Paulo, Brazil. In: Proceedings of the CIFOR Workshop on Site Management and Productivity in Tropical Plantation Forests, Kerala, India, pp 3–9

  • Hart SC, Nason GE, Myrold DD, Perry DA (1994) Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75:880–891. doi:10.2307/1939413

    Article  Google Scholar 

  • Hart SC, Binkley D, Perry DA (1997) Influence of red alder on soil nitrogen transformations in two conifer forest of contrasting productivity. Soil Biol Biochem 29:1111–1123. doi:10.1016/S0038-0717(97)00004-7

    Article  CAS  Google Scholar 

  • Holtgrieve GW, Jewett PK, Matson PA (2006) Variations in soil N cycling and trace gas emissions in wet tropical forests. Oecologia 146:584–594. doi:10.1007/s00442-005-0222-1

    Article  PubMed  Google Scholar 

  • Hontoria C, Rodriguez-Murillo JC, Saa A (1999) Relationships between soil organic carbon and site characteristics in Peninsular Spain. Soil Sci Soc Am J 63:614–621

    Article  CAS  Google Scholar 

  • Houba VJS, Novozamsky I, Termminghoff E (1994) Soil analysis procedures. Wageningen Agricultural University, Wageningen

    Google Scholar 

  • IFN (2006) Inventário Florestal Nacional (2005–2006). Divisão de Inventário e Estatísticas Florestais. Direcção Geral das Florestas, Lisboa

    Google Scholar 

  • Insam H (1990) Are the soil microbial biomass and basal respiration governed by the meteorological regime? Soil Biol Biochem 22:525–532. doi:10.1016/0038-0717(90)90189-7

    Article  Google Scholar 

  • Jones HE, Madeira M, Herraez L et al (1999) The effect of organic matter management of the productivity of Eucalyptus globulus stands in Spain and Portugal: tree growth and harvest residue decomposition in relation to site and treatment. For Ecol Manage 122:73–86. doi:10.1016/S0378-1127(99)00033-X

    Article  Google Scholar 

  • Kane ES, Valentine DW, Schuur EAG, Dutta K (2005) Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Can J For Res 35:2118–2129. doi:10.1139/x05-093

    Article  CAS  Google Scholar 

  • Keeney D (1982) Nitrogen-availability indices. In: Page A, Miller R, Keeney D (eds) Methods of soil analysis, Part 2. Chemical and Microbiological Properties. ASA, Madison, WI, pp 711–734

    Google Scholar 

  • Kent M, Coker P (1992) Vegetation description and analysis: a practical approach. Belhaven Press, London

    Google Scholar 

  • Khanna PK (1998) Nutrient cycling under mixed-species tree systems in southeast Asia. Agroforest Syst 38:99–120. doi:10.1023/A:1005952410569

    Article  Google Scholar 

  • Khanna PK, Ludwig B, Bauhus J, O’Hara C (2001) Assessment and significance of labile organic C pools in forest soils. In: Lal R, Kimble JM, Follett R, Stewart BA (eds) Assessment methods for soil carbon. CRC Press, pp 167–182

  • Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am J 18:33–34

    Article  CAS  Google Scholar 

  • Li X, Chen Z (2004) Soil microbial biomass C and N along a climatic transect in the Mongolian steppe. Biol Fertil Soils 39:344–351. doi:10.1007/s00374-004-0720-z

    Article  Google Scholar 

  • Livesley SJ, Adams MA, Grierson PF (2007) Soil water nitrate and ammonium dynamics under a sewage effluent–irrigated eucalypt plantation. J Environ Qual 36:1883–1894. doi:10.2134/jeq2007.0175

    Article  CAS  PubMed  Google Scholar 

  • Madeira M, Pereira JS (1990–1991) Productivity, nutrient immobilization and soil chemical properties in an Eucalyptus globulus plantation under different water and nutrient regimes. Water Air Soil Poll 54:621–624. doi:10.1007/BF00298698

    CAS  Google Scholar 

  • Madeira M, Andreux F, Portal JM (1989) Changes in soil organic matter characteristics due to reforestation with Eucalyptus globulus Labill. Sci Total Environ 81/82:481–488. doi:10.2134/jeq2007.0175

    Article  Google Scholar 

  • Madeira M, Fabião A, Pereira JS, Araújo MC, Ribeiro C (2002) Changes in carbon stocks in Eucalyptus globulus Labill. plantations induced by different water and nutrient availability. For Ecol Manag 171:75–85. doi:10.1016/S0378-1127(02)00462-0

    Article  Google Scholar 

  • Madeira M, Magalhães MC, Azevedo A, Fabião A, Araújo MC, Pina JP (2004) Efeito da gestão dos resíduos de abate nas características do solo e no crescimento de uma plantação de Eucalyptus globulus, em talhadia. Rev Ciências Agrárias 27:414–431

    Google Scholar 

  • Magalhães MCS (2000) Efeitos de Técnicas de Preparação do Solo e Gestão dos Resíduos Orgânicos em Características Físico-Químicas do Solo de Plantações Florestais, Doctoral Thesis, Universidade Técnica de Lisboa

  • Martins AA, Madeira M, Réfega AG (1995) Influence of rainfall on properties of soils developed on granite in Portugal. Arid Soil Res Rehabil 9:353–366. doi:10.1080/15324989509385904

    Google Scholar 

  • Mendham DS, Sankaran KV, O’Connell AM, Grove TS (2002) Eucalyptus globulus harvest residue management effects on soil carbon and microbial biomass at 1 and 5 years after plantation establishment. Soil Biol Biochem 34:1903–1912. doi:10.1016/S0038-0717(02)00205-5

    Article  CAS  Google Scholar 

  • Mendham DS, Heagney EC, Corbeels M, O’Connell AM, Grove TS, McMurtrie RE (2004) Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus. Soil Biol Biochem 36:1067–1074. doi:10.1016/j.soilbio.2004.02.018

    Article  CAS  Google Scholar 

  • Merino A, Rodríguez-Lopez Á, Brañas J, Rodriguez-Soalleiro R (2003) Nutrition and growth in newly established plantations of Eucalyptus globulus in northwestern Spain. Ann For Sci 60:509–517. doi:10.1051/forest:2003044

    Article  Google Scholar 

  • Meyer H, Kaiser C, Biasi C, Hämmerle R, Rusalimova O, Lashchinsky N, Baranyi C, Daims H, Barsukov P, Richter A (2006) Soil carbon and nitrogen dynamics along a latitudinal transect in Western Siberia, Russia. Biogeochemistry 81:239–252. doi:10.1007/s10533-006-9039-1

    Article  CAS  Google Scholar 

  • Moroni MT, Smethurst PJ, Holz GK (2002) Nitrogen fluxes in surface soils of young Eucalyptus nitens plantations in Tasmania. Aust J Soil Res 40:543–553. doi:10.1071/SR01024

    Article  Google Scholar 

  • O’Connell AM, Grove TS, Mendham DS, Rance SJ (2004) Impact of harvest residue management on soil nitrogen dynamics in Eucalyptus globulus plantations in south western Australia. Soil Biol Biochem 36:39–48. doi:10.1016/j.soilbio.2003.08.017

    Article  Google Scholar 

  • Oyonarte C, Aranda V, Durante P (2008) Soil surface properties in Mediterranean mountain ecosystems: effects of environmental factors and implications of management. For Ecol Manag 254:156–165. doi:10.1016/j.foreco.2007.07.034

    Article  Google Scholar 

  • Parfitt RL, Salt GJ (2001) Carbon and nitrogen mineralization in sand, silt, and clay fractions of soils under maize and pasture. Aust J of Soil Res 39:361–371. doi:10.1071/SR00028

    Article  Google Scholar 

  • Pereira JS, Tomé M, Madeira M, Oliveira AC, Tomé J, Almeida MH (1996) Eucalypt plantations in Portugal. In: Attiwill PM, Adams MA (eds) Nutrition of eucalypts. CSIRO, Australia, pp 371–387

    Google Scholar 

  • Polglase PJ, Attiwill PM, Adams MA (1992) Nitrogen and phosphorus cycling in relation to stand age of Eucalyptus regnans F. Muell. II. N mineralization and nitrification. Plant Soil 142:167–176. doi:10.1007/BF00010964

    Article  CAS  Google Scholar 

  • Reis RM, Gonçalves MZ (1981) Caracterização climática da região agrícola do ribatejo e oeste. O Clima de Portugal. Fasc. XXXII. Instituto Nacional de Meteorologia e Geofísica, Lisboa

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi:10.1890/03-8002

    Article  Google Scholar 

  • Sollins P, Glassman C, Paul EA, Swanston C, Lajtha K, Heil JW, Elliott ET (1999) Soil carbon and nitrogen: pools and fractions. In: Robertson GP (ed) Standard soil methods for long-term ecological research. Oxford Univ. Press, New York, pp 89–105

    Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207. doi:10.1071/SR9920195

    Article  CAS  Google Scholar 

  • Stark JM, Hart SC (1997) High rates of nitrification and nitrite turnover in undisturbed coniferous forests. Nature 385:61–64. doi:10.1038/385061a0

    Article  CAS  Google Scholar 

  • Ste-Marie C, Paré D (1999) Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31:1579–1589. doi:10.1016/S0038-0717(99)00086-3

    Article  CAS  Google Scholar 

  • Stevenson FJ (1986) Cycles of soils Carbon, Nitrogen, Phosphorus, Sulphur, Macronutrients. Wiley, New York

    Google Scholar 

  • Vance PC, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Verchot LV, Holmes Z, Mulon L, Groffman PM, Lovett GM (2001) Gross vs net rates of N mineralization and nitrification as indicators of functional differences between forest types. Soil Biol Biochem 33:1889–1901. doi:10.1016/S0038-0717(01)00095-5

    Article  CAS  Google Scholar 

  • Verhagen FJM, Laanbroek HJ, Woldendorp JW (1995) Competition for ammonium between plant roots and nitrifying and heterotrophic bacteria and the effects of protozoan grazing. Plant Soil 170:241–250. doi:10.1007/BF00010477

    Article  CAS  Google Scholar 

  • WRB (2006) World reference base for soil resources 2006. 2nd edn. World Soil Resources Reports No. 103. FAO, Rome

  • Zak DR, Pregitzer KS (1990) Spatial and temporal variability of nitrogen cycling in northern Lower Michigan. For Sci 36:367–380

    Google Scholar 

Download references

Acknowledgements

The CELBI Pulp Company is acknowledged for allowing the use of its eucalyptus plantations, and Clara Araújo for her assistance in plot selection. Laboratory staff of the Departamento de Ciências do Ambiente (Instituto Superior de Agronomia) is acknowledged for their technical assistance for analytical work and Paulo Marques and Luis Hilário for their help in field work. The authors also thank Marta Carneiro for floristic survey and Prof. Ana Carla Madeira for English style improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Xesús Gómez-Rey.

Additional information

Responsible Editor: Eric Paterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Rey, M.X., Madeira, M., Gonzalez-Prieto, S.J. et al. Soil C and N dynamics within a precipitation gradient in Mediterranean eucalypt plantations. Plant Soil 336, 157–171 (2010). https://doi.org/10.1007/s11104-010-0456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0456-5

Keywords

Navigation