Skip to main content

Advertisement

Log in

Nitric oxide emissions from rice-wheat rotation fields in eastern China: effect of fertilization, soil water content, and crop residue

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

A better understanding of nitric oxide (NO) emission from a typical rice-wheat agroecosystem in eastern China is important for calculating the regional inventory and to propose effective NO mitigation options. Nitric oxide flux measurements by static chamber method were made from treatments of conventional nitrogen-fertilizer (NPK plus urea) application, no-nitrogen application, and nitrogen-fertilizer with incorporation of wheat straw residue for an entire rotation period (June 2002 to June 2003). During the wheat growing season two further treatments of fertilizer without crops planted and bare soil without nitrogen (N) fertilization were applied. Total annual NO emissions for the conventional fertilizer, no N fertilizer and fertilizer plus straw application were 0.44 ± 0.01, 0.22 ± 0.01, and 0.57 ± 0.02 kg N ha−1y−1, respectively. On average 27% of this emission occurred during the rice season due to flooding/drainage cycle. The N fertilizer-induced emission factor for the conventional fertilizer treatment was 0.05% of the total N applied. Incorporation of wheat straw in the rice season showed no significant effect on NO flux due to the high C/N ratio of the straw incorporated. During the wheat growing season, NO emissions for all treatments had similar variation pattern controlled by soil moisture dynamics. Total NO emissions in the wheat season for fertilized bare soil (no wheat planted) were 0.389 ± 0.01 and 0.21 ± 0.01 kg N ha−1 y−1, respectively. The results indicate the importance of N fertilizer and soil moisture to nitrogen loss through the formation of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama H, McTaggart I, Ball B, Scott A (2004) N2O, NO, and NH3 emissions from soil after the application of organic fertilizers, urea and water. Water Air Soil Pollut 156:113–129. doi:10.1023/B:WATE.0000036800.20599.46

    Article  CAS  Google Scholar 

  • Akiyama H, Tsuruta H (2002) Effect of chemical fertilizer form on N2O, NO and NO2 fluxes from Andisol field. Nutr Cycl Agroecosyst 63:219–230. doi:10.1023/A:1021102925159

    Article  CAS  Google Scholar 

  • Akiyama H, Tsuruta H (2003) Effect of organic matter application on N2O, NO, and NO2 fluxes from an Andisol field. Glob Biogeochem Cycles 17:1100. doi:1110.1029/2002GB002016

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002a) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16:1058. doi:10.1029/2001GB001811

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002b) Modeling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycles 16:1080. doi:1010.1029/2001GB001812

    Article  Google Scholar 

  • Cai Z, Laughlin RJ, Stevens RJ (2001) Nitrous oxide and dinitrogen emissions from soil under different water regimes and straw amendment. Chemosphere 42:113–121. doi:10.1016/S0045-6535(00)00116-8

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Verchot LV (2000) Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database. Glob Biogeochem Cycles 14:1035–1043. doi:10.1029/1999GB001223

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P, Wang M (2001) Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp

  • Fang S, Mu Y (2006) Air/surface exchange of nitric oxide between two typical vegetable lands and the atmosphere in the Yangtze Delta, China. Atmos Environ 40:6329–6337. doi:10.1016/j.atmosenv.2006.05.041

    Article  CAS  Google Scholar 

  • Fang S, Mu Y (2007) NOx fluxes from three kinds of agricultural lands in the Yangtze Delta, China. Atmos Environ 41:4766–4772. doi:10.1016/j.atmosenv.2007.02.015

    Article  CAS  Google Scholar 

  • Fang S, Mu Y (2009) NOx fluxes from several typical agricultural fields during summer-autumn in the Yangtze Delta, China. Atmos Environ 43:2665–2671. doi:10.1016/j.atmosenv.2009.02.027

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2009) FAO Statistical Databases. http://apps.fao.org/. Accessed 15 Oct 2009

  • Goedde M, Conrad R (2000) Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biol Fertil Soils 32:120–128. doi:10.1007/s003740000247

    Article  Google Scholar 

  • Hou AX, Tsuruta H (2003) Nitrous oxide and nitric oxide fluxes from an upland field in Japan: effect of urea type, placement, and crop residues. Nutr Cycl Agroecosyst 65:191–200. doi:10.1023/A:1022149901586

    Article  CAS  Google Scholar 

  • Jenkin ME, Clemitshaw KC (2000) Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmos Environ 34:2499–2527. doi:10.1016/S1352-2310(99)00478-1

    Article  CAS  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS 106:3041–3046. doi:10.1073/pnas.0902655106

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wang X (2008) Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application. Atmos Environ 42:4747–4754. doi:10.1016/j.atmosenv.2008.01.042

    Article  CAS  Google Scholar 

  • Liu C, Zheng X, Zhou Z, Han S, Wang Y, Wang K, Liang W, Li M, Chen D, Yang Z (2010) Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant Soil. doi:10.1007/s11104-11009-10278-11105

    Google Scholar 

  • Ludwig J, Meixner FX, Vogel B, Foerstner J (2001) Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52:225–257. doi:10.1023/A:1006424330555

    Article  CAS  Google Scholar 

  • Matson P (1997) NOx emission from soils and its consequences for the atmosphere and biosphere: critical gaps and research directions for the future. Nutr Cycl Agroecosyst 48:1–6. doi:10.1023/A:1009730430912

    Article  CAS  Google Scholar 

  • McTaggart IP, Akiyama H, Tsuruta H, Ball BC (2002) Influence of soil physical properties, fertiliser type and moisture tension on N2O and NO emissions from nearly saturated Japanese upland soils. Nutr Cycl Agroecosyst 63:207–217. doi:10.1023/A:1021119412863

    Article  CAS  Google Scholar 

  • Mei B, Zheng X, Xie B, Dong H, Zhou Z, Wang R, Deng J, Cui F, Tong H, Zhu J (2009) Nitric oxide emissions from conventional vegetable fields in southeastern China. Atmos Environ 43:2762–2769. doi:10.1016/j.atmosenv.2009.02.040

    Article  CAS  Google Scholar 

  • Meijide A, Garcia-Torres L, Arce A, Vallejo A (2009) Nitrogen oxide emissions affected by organic fertilization in a non-irrigated Mediterranean barley field. Agric Ecosyst Environ 132:106–115. doi:10.1016/j.agee.2009.03.005

    Article  CAS  Google Scholar 

  • Ormeci B, Sanin SL, Peirce JJ (1999) Laboratory study of NO flux from agricultural soil: effects of soil moisture, pH, and temperature. J Geophys Res 104:1621–1629. doi:1610.1029/1698JD02834

    Article  CAS  Google Scholar 

  • Schmidt U, Thoeni H, Kaupenjohann M (2000) Using a boundary line approach to analyze N2O flux data from agricultural soils. Nutr Cycl Agroecosyst 57:119–129. doi:10.1023/A:1009854220769

    Article  CAS  Google Scholar 

  • Skiba U, Fowler D, Smith KA (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, controls and mitigation options. Nutr Cycl Agroecosyst 48:139–153. doi:10.1023/A:1009734514983

    Article  CAS  Google Scholar 

  • Stange CF (2007) A novel approach to combine response functions in ecological process modelling. Ecol Model 204:547–552. doi:10.1016/j.ecolmodel.2007.01.005

    Article  Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi:10.1007/s10705-006-9000-7

    Article  CAS  Google Scholar 

  • Thornton FC, Shurpali NJ, Bock BR, Reddy KC (1998) N2O and NO emissions from poultry litter and urea applications to Bermuda grass. Atmos Environ 32:1623–1630. doi:10.1016/S1352-2310(97)00390-7

    Article  CAS  Google Scholar 

  • Wang Q, Han Z, Higano Y (2005) An inventory of nitric oxide emissions from soils in China. Environ Pollut 135:83–90. doi:10.1016/j.envpol.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  • Yamulki S, Goulding KWT, Webster CP, Harrison RM (1995) Studies on NO and N2O fluxes from a wheat field. Atmos Environ 29:1627–1635. doi:10.1016/1352-2310(95)00059-8

    Article  CAS  Google Scholar 

  • Yan X, Akimoto H, Ohara T (2003a) Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Glob Chang Biol 9:1080–1096. doi:10.1046/j.1365-2486.2003.00649.x

    Article  Google Scholar 

  • Yan X, Shimizu K, Akimoto H, Ohara T (2003b) Determining fertilizer-induced NO emission ratio from soils by a statistical distribution model. Biol Fertil Soils 39:45–50. doi:10.1007/s00374-003-0665-7

    Article  CAS  Google Scholar 

  • Yao Z, Zheng X, Xie B, Mei B, Wang R, Butterbach-Bahl K, Zhu J, Yin R (2009) Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biol Biochem. doi:10.1016/j.soilbio.2009.1007.1025

    Google Scholar 

  • Yienger JJ, Levy H (1995) Empirical model of global soil-biogenic NOx emissions. J Geophys Res 100:11447–11464. doi:10.1029/95JD00370

    Article  CAS  Google Scholar 

  • Yu J, Meixner FX, Sun W, Liang Z, Chen Y, Mamtimin B, Wang G, Sun Z (2008) Biogenic nitric oxide emission from saline sodic soils in a semiarid region, northeastern China: a laboratory study. J Geophys Res 113:G04005. doi:10.1029/2007JG000576

    Article  Google Scholar 

  • Zheng X, Huang Y, Wang Y, Wang M (2003a) a) Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Glob Chang Biol 9:219–227. doi:10.1046/j.1365-2486.2003.00586.x

    Article  Google Scholar 

  • Zheng X, Huang Y, Wang Y, Wang M, Jin J, Li L (2003b) Effects of soil temperature on nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Glob Chang Biol 9:601–611. doi:10.1046/j.1365-2486.2003.00610.x

    Article  Google Scholar 

  • Zhou Z, Zheng X, Wang M, Butterbach-Bahl K (2007) CH4, N2O and NO emissions from a rice-wheat rotation cropping field in East China. Clim Environ Res 12:751–760 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Chinese Academy of Sciences (KZCX2-yw-204, KZCX3-SW-440), the National Natural Science Foundation of China (40425010), and the European Union (NitroEurope IP 017841). We thank Drs. Zhongjun Xu and Yiwei Diao for their assistance with the field experiments. We would also like to thank the anonymous reviewers who provided helpful comments that greatly improved the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunhua Zheng.

Additional information

Responsible Editor: Ute Skiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Zheng, X., Xie, B. et al. Nitric oxide emissions from rice-wheat rotation fields in eastern China: effect of fertilization, soil water content, and crop residue. Plant Soil 336, 87–98 (2010). https://doi.org/10.1007/s11104-010-0450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0450-y

Keywords

Navigation