Skip to main content
Log in

Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Haumaniastrum katangense and Crepidorhopalon tenuis are two cuprophytes characteristic of the Katangan Copper Belt flora. We have studied the endophytic bacteria of H. katangense and C. tenuis as a first step to evaluate their potential contribution to plant adaptation to copper excess. Although their number varied considerably from sample to sample, culturable bacteria were found in roots and shoots of most plants. More than 800 isolates were screened for each plant species. Identification of isolates based on the sequence of the 16S rRNA gene, allocated them to 31 taxonomic units, belonging to 17 genera, mainly Proteobacteria. A great proportion of the bacteria were cupro-resistant and often resistant to other metals, especially zinc and cobalt, as well as nickel for the Methylobacterium isolates. Direct PCR amplification of the polymorphic bacterial internal transcribed spacer (ITS) from the plants’ organs DNA revealed a more diverse endophytic community, with more Gram+, among which a Rubrobacteridae that was never found associated with plants before. This work represents the first study of endophytes in Katangan cuprophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baker A, Brooks R, Pease A, Malaisse F (1983) Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaïre. Plant Soil 73:377–385

    Article  CAS  Google Scholar 

  • Barac T, Taghavi T, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble volatile organic pollutants. Nat Biotechnol 22:583–588

    Article  PubMed  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  PubMed  CAS  Google Scholar 

  • Brim H, Heyndrickx M, De Vos P, Wilmotte A, Springael D, Schlegel HG, Mergeay M (1999) Amplified rDNA restriction analysis and further genotypic characterisation of metal-resistant soil bacteria and related facultative hydrogenotrophs. Syst Appl Microbiol 22:258–268

    PubMed  CAS  Google Scholar 

  • Brooks RR (1978) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48:541–544

    Article  Google Scholar 

  • Burkhead JL, Gogolin-Reynolds KA, Abdel-Ghany SA, Cohu C, Pilon M (2009) Copper homeostasis. New Phytol. doi:10.1111/j.1469-8137.2009.02846

    PubMed  Google Scholar 

  • Bussman I, Philipp B, Schink B (2001) Factors influencing the cultivability of lake water bacteria. J Microbiol Meth 47:41–50

    Article  Google Scholar 

  • Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini C, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for the automated ribosomal intergenic spacer analysis (ARISA) of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

    Article  PubMed  CAS  Google Scholar 

  • Chipeng F, Hermans C, Colinet G, Faucon MP, Ngongo M, Meert P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P. A. Duvign & Plancke. Plant Soil 328:235–244

    Article  CAS  Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–249

    Article  CAS  Google Scholar 

  • Diels L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56:1485–1491

    PubMed  CAS  Google Scholar 

  • Doty S (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  PubMed  CAS  Google Scholar 

  • Duvigneaud P (1958) The vegetation of Katanga and its metalliferous soils. Bull Soc R Bot Belg 90:127–286

    Google Scholar 

  • Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  PubMed  CAS  Google Scholar 

  • Faucon M-P, Shutcha M, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  CAS  Google Scholar 

  • Faucon M-P, Colinet G, Mahy G, Ngongo Luhembwe M, Verbruggen N, Meerts P (2008) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212

    Article  CAS  Google Scholar 

  • Ferreira AC, Nobre MF, Moore E, Rainey FA, Battista JR, da Costa M (1999) Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3:235–238

    Article  PubMed  CAS  Google Scholar 

  • Fischer E (1989) Contributions of the flora of Central Africa III: new species of Lindernia Allioni and Crepidorhopalon E. Fisher (Scrophulariaceae) from Zaïre, Burundi and Tanzania. Bull Jard Bot Nat Belg 60:409–413

    Article  Google Scholar 

  • Gonzales N, Romero J, Espejo RT (2003) Comprehensive detection of bacterial populations by PCR amplification of the 16S–23S rRNA spacer region. J Microbiol Meth 55:91–97

    Article  CAS  Google Scholar 

  • Gürtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142:3–16

    Article  PubMed  Google Scholar 

  • Hardoim P, van Overbeek L, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Bowyer J, Holley M, O’Donoghue M, Montgomery M, Gillings MR (2000) Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol Ecol 33:111–120

    Article  PubMed  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni-hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  • Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, Fuji S-I, Sato T, Ytow N, Ezura H, Minamisawa K, Fujimura T (2006) Community analysis of seed-associated microbes in forage crops using culture-independent methods. Microbes Environ 21:112–121

    Article  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli A, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol. doi:10.1111/j.1365-2672.2010.04670.x

    PubMed  Google Scholar 

  • Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts. Plant Signal Behav 2:74–78

    PubMed  Google Scholar 

  • Leteinturier B, Baker AJ, Malaisse F (1999) Early stages of natural revegetation of metalliferous mine workings in South Central Africa: a preliminary survey. Biotechnol Agron Soc Environ 3:28–41

    Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediat 3:173–187

    Article  CAS  Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsfeld J, Clijsters H, van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremediat 4:101–105

    Article  CAS  Google Scholar 

  • Macnair M (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105

    Article  CAS  Google Scholar 

  • Malaisse F, Brooks RR (1982) Colonisation of modified metalliferous environments in Zaire by the copper flower Haumaniastrum katangense. Plant Soil 64:289–293

    Article  CAS  Google Scholar 

  • Malaisse F, Brooks RR, Baker AJ (1994) Diversity of vegetation communities in relation to soil heavy metal content at the Shinkolobwe copper/cobalt/uranium mineralization, upper Shaba, Zaire. Belg J Bot 127:3–16

    Google Scholar 

  • Marschner H (1995) Functions of mineral nutrients: micronutrients. In: Marschner H (ed) Mineral nutrition of higher plants. Academic Press, London, pp 313–404

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediat 11:251–267

    Article  CAS  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • Meharg A (2005) Mechanisms of plant resistance to metal and metalloid ions and potential for biotechnology applications. Plant Soil 274:163–174

    Article  CAS  Google Scholar 

  • Mengoni A, Pini F, Huang L-N, Shu W-S, Bazzicalupo M (2009) plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv. Microb Ecol 58:660–667

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    Article  PubMed  Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal contaminated soils. NATO science series: IV: earth and environmental sciences, vol 68. Springer, New York, pp 25–52

    Google Scholar 

  • Reeves RD, Baker AJ (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microb Interact 19:827–837

    Article  CAS  Google Scholar 

  • Ryan RP, Germain K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Ikeda S, Ezura H, Minamisawa K (2007) Microbial community analysis of the phytosphere using culture-independent methodologies. Microbes Environ 22:93–105

    Article  Google Scholar 

  • Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Sun L-N, Zhang Y-F, He L-Y, Chen Z-J, Wang Q-Y, Qian M, Sheng X-F (2010) Genetic diversity and characterization of heavy metal-resistant endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  PubMed  CAS  Google Scholar 

  • Surette M, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko YA, Ivanova EG, Doronina NV (2001) Aerobic methylotrophic bacteria as phyto-symbionts. Microbiology 70:623–632

    Article  CAS  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180

    Article  PubMed  CAS  Google Scholar 

  • Velázquez E, Rojas M, Lorite MJ, Rivas R, Zurdo-Piñeiro JL, Heydrich M, Bedmar E (2008) Genetic diversity of endophytic bacteria which could be found in the apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants. J Basic Microbiol 48:118–124

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • von Wintzingerode F, Göbel U, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

Download references

Acknowledgments

A.C.K was supported by a PhD fellowship from the Coopération Technique Belge. C.-L. M. is supported by a grant on the Interuniversity Attraction Pole Programme VI/33 (Belgian Science Policy). The project is supported by a grant from the Fonds de la Recherche Scientifique (FRFC n°2.4558.08). Special thanks are due to M. G. Colinet and Professors P. Meerts and M. Ngongo in charge of the PIC REMEDLU project, for their assistance and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Vander Wauven.

Additional information

Responsible Editor: Henk Schat.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Number of plant specimens containing endophytic isolates from the same taxonomic group as the mentioned isolate. +, presence of isolate; −, absence of isolate. n = 7 (H. katangense) and 6 (C. tenuis). Results from Pearson’s chi square exact tests are indicated for each taxon. Isolates were considered for the statistical analysis when they were detected more than once (DOC 34 kb).

Table S2

Distribution between plant species and among organs of the ITS amplicons obtained from more than one plant-extracted DNA sample. +, number of DNA samples from which the sequence was obtained; −, number of samples from which it was not obtained. n = 8 for H. katangense; n = 6 for C. tenuis leaves and stems and n = 4 for C. tenuis roots. No significant differences were found between species. Significant differences among organs are in bold and indicated as follows: **, P < 0.001; *, P < 0.05. Ampl. for amplicon (DOC 47 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cubaka Kabagale, A., Cornu, B., van Vliet, F. et al. Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis . Plant Soil 334, 461–474 (2010). https://doi.org/10.1007/s11104-010-0396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0396-0

Keywords

Navigation