Skip to main content
Log in

Deep soil organic matter—a key but poorly understood component of terrestrial C cycle

Plant and Soil Aims and scope Submit manuscript

Abstract

Despite their low carbon (C) content, most subsoil horizons contribute to more than half of the total soil C stocks, and therefore need to be considered in the global C cycle. Until recently, the properties and dynamics of C in deep soils was largely ignored. The aim of this review is to synthesize literature concerning the sources, composition, mechanisms of stabilisation and destabilization of soil organic matter (SOM) stored in subsoil horizons. Organic C input into subsoils occurs in dissolved form (DOC) following preferential flow pathways, as aboveground or root litter and exudates along root channels and/or through bioturbation. The relative importance of these inputs for subsoil C distribution and dynamics still needs to be evaluated. Generally, C in deep soil horizons is characterized by high mean residence times of up to several thousand years. With few exceptions, the carbon-to-nitrogen (C/N) ratio is decreasing with soil depth, while the stable C and N isotope ratios of SOM are increasing, indicating that organic matter (OM) in deep soil horizons is highly processed. Several studies suggest that SOM in subsoils is enriched in microbial-derived C compounds and depleted in energy-rich plant material compared to topsoil SOM. However, the chemical composition of SOM in subsoils is soil-type specific and greatly influenced by pedological processes. Interaction with the mineral phase, in particular amorphous iron (Fe) and aluminum (Al) oxides was reported to be the main stabilization mechanism in acid and near neutral soils. In addition, occlusion within soil aggregates has been identified to account for a great proportion of SOM preserved in subsoils. Laboratory studies have shown that the decomposition of subsoil C with high residence times could be stimulated by addition of labile C. Other mechanisms leading to destabilisation of SOM in subsoils include disruption of the physical structure and nutrient supply to soil microorganisms. One of the most important factors leading to protection of SOM in subsoils may be the spatial separation of SOM, microorganisms and extracellular enzyme activity possibly related to the heterogeneity of C input. As a result of the different processes, stabilized SOM in subsoils is horizontally stratified. In order to better understand deep SOM dynamics and to include them into soil C models, quantitative information about C fluxes resulting from C input, stabilization and destabilization processes at the field scale are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868

    Article  CAS  Google Scholar 

  • Ajwa HA, Rice CW, Sotomayor D (1988) Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles. Soil Sci Soc Am J 62:942–951

    Article  Google Scholar 

  • Ali AA, Carcaillet C, Talon B, Roiron P, Terral JF (2005) Pinus cembra L. (arolla pine), a common tree in the inner French Alps since the early Holocene and above the present tree line: a synthesis based on charcoal data from soils and travertines. J Biogeogr 32:1659–1669

    Article  Google Scholar 

  • Allard B, Templier J, Largeau C (1998) Artifactual origin of mycobacterial bacteran. Formation of melanoidin-like artifact macromolecular material during the usual isolation process. Org Geochem 26:691–703

    Article  Google Scholar 

  • Andersen TH, Domsche KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Baisden WT, Amundson R, Brenner DL, Cook AC, Kendall C, Harden JW (2002) A multiisotope C and N modeling analysis of soil organic matter turnover and transport a a function of soil depth in a California annual grassland soil chronosequence. Glob Biogeochem Cycles 16:1135. doi:10.1029/2001GB001823,2002

    Article  CAS  Google Scholar 

  • Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 9:1261–1263

    Article  Google Scholar 

  • Balesdent J, Girardin C, Mariotti A (1993) Site-related δ13C of tree leaves and soil organic matter in a temperate forest. Ecology 74:1713–1721

    Article  Google Scholar 

  • Basile-Doelsch I, Amundson R, Stone WEE, Masiello CA, Bottero JY, Colin F, Masin F, Borschneck D, Meunier JD (2005) Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Reunion. Eur J Soil Sci 56:689–703

    CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Bardy M, Bonhomme C, Fritsch E, Maquet J, Hajjar R, Allard T, Derenne S, Calas G (2007) Al speciation in tropical podzols of the upper Amazon basin: a solid-state Al-27 MAS and MQMAS NMR study. Geochim Cosmochim Acta 71:3211–3222

    Article  CAS  Google Scholar 

  • Blume E, Bischoff M, Reichert JM, Moorman T, Konopka A, Turco RF (2002) Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. ApplSoil Ecol 20:171–181

    Google Scholar 

  • Boström B, Comstedt C, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  PubMed  Google Scholar 

  • Brodowski S, Amelung W, Haumaier L, Abetz C, Zech W (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128:116–129

    Article  CAS  Google Scholar 

  • Bruun S, Thomsen IK, Christensen BT, Jensen LS (2008) In search of stable soil organic carbon fractions: a comparison of methods applied to soils labelled with 14C for 40 days or 40 years. Eur J Soil Sci 59:247–256

    Article  CAS  Google Scholar 

  • Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001a) Preferential flow paths: biological ‘hot spots’ in soils. Soil Biol Biochem 33:729–738

    Article  CAS  Google Scholar 

  • Bundt M, Jäggi M, Blaser P, Siegwolf R, Hagedorn F (2001b) Carbon and nitrogen dynamics in preferential flow paths and matrix of a forest soil. Soil Sci Soc Am J 65:1529–1538

    Article  CAS  Google Scholar 

  • Chabbi A, Kögel-Knabner I, Rumpel C (2009) Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol Biochem 41:256–271

    Article  CAS  Google Scholar 

  • Charnay MP, Tuis S, Coquet Y, Barriuso E (2005) Spatial variability in C-14-herbicide degradation in surface and subsurface soils. Pest Manage Sci 61:845–855

    Article  CAS  Google Scholar 

  • Chevallier T, Voltz M, Blanchart E, Chotte JL, Eschenbrenner V, Mahieu M, Albrecht A (2000) Spatial and temporal changes of soil C after establishment of a pasture on a long-term cultivated vertisol (Martinique). Geoderma 94:43–58

    Article  CAS  Google Scholar 

  • Collins HP et al (1999) Soil carbon dynamics in corn-based agroecosystems: results from carbon-13 natural abundance. Soil Sci Soc Am J 63(3):584–591

    Article  CAS  Google Scholar 

  • Cuypers C, Grotenhuis T, Nierop KGJ, Franco EM, de Jager A, Rulkens W (2002) Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48:919–931

    Article  CAS  PubMed  Google Scholar 

  • Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Glob Biogeochem Cycles 21:GB3005. doi:10.1029/2007GB002798

    Article  CAS  Google Scholar 

  • Dai KH, Johnson CE (1999) Applicability of solid-state 13C CP/MAS NMR analysis in Spodosols: chemical removal of magnetic material. Geoderma 93:289–310

    Article  CAS  Google Scholar 

  • Dai X, Boutton TW, Glaser B, Ansley RJ, Zech W (2005) Black carbon in a temperate mixed-grass savanna. Soil Biol Biochem 37:1879–1881

    Article  CAS  Google Scholar 

  • Derenne S, Largeau C (2001) A review of some important families of refractory macromolecules: composition, origin and fate in soils and sediments. Soil Sci 166:833–847

    Article  CAS  Google Scholar 

  • Dick DP, Goncalves CN, Dalmolin RSD, Knicker H, Klamt E, Kögel-Knabner I, Simoes ML, Martin-Neto L (2005) Characteristis of soil organic matter of different Brazilian Ferralsols under native vegetation as a function of soil depth. Geoderma 124:319–333

    Article  CAS  Google Scholar 

  • Don A, Schumacher J, Scherer-Lorenzen M, Scholten T, Schulze E-D (2007) Spatial and vertical variation of soil carbon at two grassland sites—Implications for measuring soil carbon stocks. Geoderma 141:272–282

    Article  CAS  Google Scholar 

  • Don A, Steinberg B, Schoening I, Pritsch K, Joschko M, Gleixner G, Schulze ED (2008) Organic carbon sequestration in earthworm burrows. Soil Biol Biochem 40:1803–1812

    Article  CAS  Google Scholar 

  • Don A, Scholten T, Schulze E-D (2009) Conversion of cropland into grassland: implications for soil organic carbon stocks in two soils with different texture. J Plant Nutr Soil Sci 172:53–62

    Article  CAS  Google Scholar 

  • Dümig A, Schad P, Rumpel C, Dignac M-F, Kögel-Knabner I (2008) Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13C studies. Geoderma 145:143–157

    Article  Google Scholar 

  • Dümig A, Knicker H, Schad P, Rumpel C, Dignac MF, Kögel-Knabner I (2009) Changes in soil organic matter composition are associated with forest encroachment into grassland with long-term fire history. Eur J Soil Sci 60:578–589

    Article  CAS  Google Scholar 

  • Ekklund F, Ronn R, Christensen S (2001) Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol Biochem 33:475–481

    Article  Google Scholar 

  • Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartmann A, Kästner M, Marhan S, Miltner A, Scheu S, Wolters V (2008) Soilcarbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci 171:27–35

    Article  CAS  Google Scholar 

  • Elzein A, Balesdent J (1995) Mechanistic simulation of vertical distribution of carbon concentrations and residenc times in soils. Soil Sci Soc Am J 59:1328–1335

    Article  CAS  Google Scholar 

  • Eswaran H, Van den Berg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194

    Article  Google Scholar 

  • Eusterhues K, Rumpel C, Kleber M, Kögel-Knabner I (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34:1591–1600

    Article  CAS  Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Stabilization of soil organic matter isolated by oxidative degradation. Org Geochem 36:1567–1575

    Article  CAS  Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2007) Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Org Geochem 38:1356–1372

    Article  CAS  Google Scholar 

  • Fang C, Moncrieff JB (2005) The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268:243–253

    Article  CAS  Google Scholar 

  • Favilli F, Egli M, Cherubini P, Satori G, Haeberli W, Delbos E (2008) Comparison of different methods of obtaining a resilient organic matter fraction in Alpine soils. Geoderma

  • Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Global Change Biol 9:1322–1332

    Article  Google Scholar 

  • Follett RF, Kimble JM, Pruessner EG, Samson-Liebig S, Waltman S (2009) Soil organic carbon stocks with depth and land use at various U.S. sites. Soil carbon sequestration and the greenhous effect, 2nd edn. SSSA special Publication 57, Madison, pp 29–46

    Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–281

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pausas J, Casals P, Camarero L, Huguet C, Thompson R, Sebastia M-T, Romanya J (2008) Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands. Soil Biol Biochem 40:2803–2810

    Article  CAS  Google Scholar 

  • Gaudinsky JB, Trumbor SE, Devidson EA, Cook AC, Markewitz D, Richter DD (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129:420–429

    Google Scholar 

  • Gill RA, Burke IC (1999) Ecosystem consequences of plant life form changes at three sites in the semiarid United States. Oecologia 121:551–563

    Article  Google Scholar 

  • Gleixner G, Bol R, Balesdent J (1999) Molecular insight into soil carbon turnover. Rapid Commun Mass Spectrom 13:1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    Article  CAS  Google Scholar 

  • Goberna M, Insam H, Klammer S, Pascual JA, Sanchez J (2005) Microbial Community structure at different depths in disturbed and undisturbed semiarid mediterranean forest soils. Microb Ecol 50:315–326

    Article  CAS  PubMed  Google Scholar 

  • Grunewald G, Kaiser K, Jahn R, Guggenberger G (2006) Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents. Org Geochem 37:1573–1589

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biol 8:345–360

    Article  Google Scholar 

  • Guo LB, Halliday MJ, Siakimotu SJM, Gifford RM (2005) Fine root production and litter input: its effects on soil carbon. Plant Soil 272:1–10

    Article  CAS  Google Scholar 

  • Gu BH (1994) Adsorption and desorption of natural organic matter on iron-oxide–mechanisms and models. Environ Sci Technol 28:38

    Article  CAS  Google Scholar 

  • Hagedorn F, Bundt M (2002) The age of preferential flow paths. Geoderma 108:119–132

    Article  CAS  Google Scholar 

  • Helfrich M, Flessa H, Mikutta R, Dreves A, Ludwig B (2007) Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. Eur J Soil Sci 58:1316–1329

    Article  CAS  Google Scholar 

  • Högberg P (1997) Transley reviw no. 95–15N natural abundance in soil-plant systems. New Phytology 137:179–203

    Article  Google Scholar 

  • Holden PA, Fierer N (2005) Microbial processes in the vadose zone. Vadose Yone Journal 4:1–21

    CAS  Google Scholar 

  • Hosking JS (1932) The influence of hydrogen-ion concentration on the decomposition of soil organic matter by hydrogen peroxide. J Agri Sci 22:92

    Article  CAS  Google Scholar 

  • Humphreys GS (1994) Biotubation, biofabrics and the biomantle: an example from the Sydney Bassin. In: Ringrose-Voase AJ, Humphreys GS (eds) Soil micromorphology: studies in management and genesis. Elsvier, Amsterdam, pp 421–436

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Janzen HH (2005) Soil carbon: a measure of ecosystem response in a changing world? Can J Soil Sci 85:467–480

    CAS  Google Scholar 

  • Jenkinson DS, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur J Soil Sci 59:400–413

    Article  Google Scholar 

  • Jenkinson DS, Poulton PR, Bryant C (2008) The turnover of organic carbon in subsoils. Part 1. Natural and bomb radiocarbon in soil profiles from the Rothamsted long-term field experiments. Eur J Soil Sci 59:391–399

    Article  CAS  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725

    Article  CAS  Google Scholar 

  • Kaiser K, Zech W (1997) Competitive sorption of dissolved organic matter fractions to soils and related mineral phases. Soil Sci Soc Am J 61:64–69

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Murphy DV, Jones DL (2008) Regulation of amino acid biodegradation in soil as affected by depth. Biol Fertil Soils 44:933–941

    Article  CAS  Google Scholar 

  • Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725

    CAS  Google Scholar 

  • Kleja DB, Svensson M, Majdi H, Jansson PE, Langvall O, Bergkvist B, Johansson MB, Weslien P, Truusb L, Lindroth A, Agren GI (2008) Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry 89:7–25

    Article  Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associaltions in temperate soils: integrating biology, mineralogy and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82

    Article  CAS  Google Scholar 

  • Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon trasformation. Soil Biol Biochem 40:425–433

    Article  CAS  Google Scholar 

  • Krull ES, Skjemstad JO (2003) d13C and d15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy. Geoderma 112:1–29

    Article  CAS  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222

    Article  Google Scholar 

  • Krull ES, Skjemstad JO, Burrows WH, Bray SG, Wynn JG, Bol R, Spouncer L, Harms B (2005) Recent vegetation changes in central Queensland, Australia: evidence from delta C-13 and C-14 analyses of soil organic matter. Geoderma 126:241–259

    Article  Google Scholar 

  • Lavelle P, Gignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OX, Dhillion OW (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Sci 33:159–193

    CAS  Google Scholar 

  • Leavitt SW, Long A (1988) Stable carbon isotope chronologies from trees in the southwestern United States. Glob Biogeochem Cycles 2:189–198

    Article  CAS  Google Scholar 

  • Leavitt SW, Follett RF, Paul EA (1996) Estimation of slow–and fast-cycling soil organic carbon pools from 6N HCl hydrolysis. Radiocarbon 38:231–239

    CAS  Google Scholar 

  • Lee KE (1985) Earthworms—their ecology and relationship with soils and land use. Academic, Sydney

    Google Scholar 

  • Liang C, Balser TC (2008) Preferential sequestration of microbial carbon in subsoils of a glacial-landscape toposequence, Dane County, WI, USA. Geoderma 148:113–119

    Article  CAS  Google Scholar 

  • Lomander A, Kätterer T, Andren O (1998) Carbon dioxide evolution from top-and subsoil as affected by moisture and constant and fluctuating temperature. Soil Biol Biochem 30:2017–2022

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons

  • Lorenz K, Lal R, Shipitalo MJ (2006) Stabilization of organic carbon in chemically separated pools in no-till and meadow soils in Northern Appalachia. Geoderma 137:205–211

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Jimenez JL (2009) Soil organic carbon stabilization in dry tropical forests of Cost Rica. Geoderma 152:95–103

    Article  CAS  Google Scholar 

  • Maillard LC (1912) Action des acides aminés sur les sucres: formation des mélanoïdines par voie méthodologique. Compt Rendus Acad Sci III Sci Vie 156:148–149

    Google Scholar 

  • Majdi H, Andersson P (2005) Fine root production and turnover in a Norway spruce stand in northern Sweden: effects of nitrogen and water manipulation. Ecosystems 8:191–199

    Article  CAS  Google Scholar 

  • Marschner B, Brodowski X, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–132

    Article  CAS  Google Scholar 

  • Martin A, Mariotti A, Balesdent J, Lavelle P, Vuattoux V (1990) Estimate of organic matter turnover rate in savanna soil by 13C natural abundance measurements. Soil Biol Biochem 22:517–523

    Article  Google Scholar 

  • Masiello CA, Chadwick OA, Southon J, Torn MS, Harden JW (2004) Weathering controls on mechanisms of carbon stroage in grassland soils. Global Biogeochemical Cycles, 18, doi:10.1029/2004GB002219

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen—a synthesis for temperate forests. Biogeochemistry 52:173–205

    Article  Google Scholar 

  • Mikutta R, Kleber M, Kaiser K, Jahn R (2005) Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci Soc Am J 69:120–135

    Article  CAS  Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77(1):25–56

    Article  CAS  Google Scholar 

  • Mikutta R, Schaumann GE, Gildemeister D, Bonneville S, Kramer MG, Chorover J, Chadwick OA, Guggenberger G (2009) Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaian Islands. Geochim Cosmochim Acta 73:2034–2060

    Article  CAS  Google Scholar 

  • Moni C, Rumpel C, Virto I, Chabbi A, Chenu C (2010) Relative importance of adsorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils. European Journal of Soil Science. submitted

  • Montané F, Rovira P, Casal P (2007) Shrub encroachment into mesic mountain grasslands in the Iberian peninsula: effects of plant quality and temperature on soil C and N stocks. Glob Biogeochem Cycles 21:GB4016. doi:10.1029/2006GB002853

    Article  CAS  Google Scholar 

  • Mueller CW, Kögel-Knabner I (2009) Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol Fertil Soils 45:347–359

    Article  CAS  Google Scholar 

  • Muneer M, Oades JM (1989a) The role of Ca-organic interactions in soil aggregate stability. 1. Laboratory studies with glucose-C-14, CaCO3, and CaSO42H2O. Aust J Soil Res 27:389–399

    Article  CAS  Google Scholar 

  • Muneer M, Oades JM (1989b) The role of Ca-organic interactions in soil aggregate stability. 2. Field studies with C-14 labelled straw, CaCO3, and CaSO42H2O. Aust J Soil Res 27:401–409

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Frey B (1988) Controls on natural nitrogen-15N and carbon-13N abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  Google Scholar 

  • Nierop KGJ (1998) Origin of aliphatic compounds in a forest soil. Org Geochem 29:1009–1016

    Article  CAS  Google Scholar 

  • O’Brian BJ, Stout JD (1978) Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol Biochem 10:309–317

    Article  Google Scholar 

  • Osher LJ, Matson PA, Amundson R (2003) Effect of land use change on soil carbon in Hawaii. Biogeochemistry 65:213–232

    Article  CAS  Google Scholar 

  • Paton TR, Humphreys GS, Mitchell PB (1995) Soils: a new global view. UCL, London, p 213

    Google Scholar 

  • Paul EA, Follett RF, Leavitt SW, Halvorson A, Peterson GA, Lyon DJ (1997) Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci Soc Am J 61:1058–1067

    Article  CAS  Google Scholar 

  • Paul EA, Collins HP, Leavitt SW (2001) Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104:239–256

    Article  CAS  Google Scholar 

  • Poirier N, Derenne S, Balesdent J, Rouzaud JN, Mariotti A, Largeau C (2002) Abundance and composition of the refractory organic fraction of an ancient, tropical soil (Pointe Noire, Congo). Org Geochem 33:383–391

    Article  CAS  Google Scholar 

  • Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution and stream water. Soil Sci Soc Am J 56:578–586

    Article  CAS  Google Scholar 

  • Quenea K, Derenne S, Largeau C, Rumpel C, Mariotti A (2005) Spectroscopic and pyrolytic features and abundance of the macromolecular refractory fraction in a sandy acid forest soil (Landes de Gascogne, France). Org Geochem 36:349–362

    Article  CAS  Google Scholar 

  • Rasse DP, Smucker AJM (1998) Root recolonization of previous root channels in corn and alfalfa rotations. Plant Soil 204:203–212

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Rasse DP, Mulder J, Moni C, Chenu C (2006) Carbon turnover kinetics with depth in a french loamy soil. Soil Sci Soc Am J 70(6):2097–2105

    Article  CAS  Google Scholar 

  • Rasmussen C, Torn MS, Southard RJ (2005) Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Sci Soc Am J 69:1711–1721

    Article  CAS  Google Scholar 

  • Rethemeyer J, Kramer C, Gleixner G, John B, Yamashita T, Flessa H, Grootes P (2005) Transformation of organic matter in agricultural soils: radiocarbon concentration versus soil depth. Geoderma 128:94–105

    Article  CAS  Google Scholar 

  • Rodionov A, Flessa H, Grabe M, Kazansky OA, Shibistova O, Guggenberger G (2007) Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone. Eur J Soil Sci 58:1260–1272

    Article  CAS  Google Scholar 

  • Rovira P, Vallejo VR (2002) Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial. Soil Biol Biochem 34:327–339

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    Article  CAS  Google Scholar 

  • Rumpel C, Eusterhues K, Kögel-Knabner I (2004) Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol Biochem 36:177–190

    Article  CAS  Google Scholar 

  • Rumpel C, Rabia N, Derenne S, Quenea K, Eusterhues K, Kögel-Knabner I, Mariotti A (2006) Alterations of soil organic matter following treatment with hydrofluoric acid (HF). Org Geochem 37:1437–1451

    Article  CAS  Google Scholar 

  • Rumpel C, Chaplot V, Chabbi A, Largeau C, Valentin C (2008) Stabilisation of HF soluble and HCl resistant organic matter in tropical sloping soils under slash and burn agriculture. Geoderma 145:347–354

    Article  CAS  Google Scholar 

  • Rumpel C, Ba A, Darboux F, Chaplot V, Planchon O (2009) Erosion budget of pyrogenic carbon at meter scale and process selectivity. Geoderma 154:131–137

    Article  CAS  Google Scholar 

  • Rumpel C, Eusterhues K, Kögel-Knabner I (2010) Non-cellulosic neutral sugar contribution to mineral associated organic matter in top-and subsoil horizons of two acid forest soils. Soil Biol Biochem 42:379–382

    Article  CAS  Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biol 16:416–426

    Article  Google Scholar 

  • Sanderman J, Amundson R (2008) A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 89:309–327

    Article  Google Scholar 

  • Scharpenseel HW, Becker-Heidmann P (1989) Shifts in 14C patterns of soil profiles due to bomb carbon, including effects of morphogenetic and trubation processes. Radiocarbon 31:627–636

    Google Scholar 

  • Scharpenseel HW, Becker-Heidmann P, Neue HU, Tsutsuki K (1989) Bomb-carbon, 14C dating and 13C measurements as tracers of organic matter dynamics as well as of morphogenetic and turbation processes. Sci Total Environ 81(82):99–110

    Google Scholar 

  • Schmidt MWI, Knicker H, Hatcher PG, Kögel-Knabner I (1997) Improvement of 13C and 15CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with hydrofluoric acid (10%). Eur J Soil Sci 48:319–328

    Article  Google Scholar 

  • Schmidt MWI, Knicker H, Kögel-Knabner I (2000) Organic matter accumulation in Aeh and Bh horizons of a Podzol – chemical characterisation in primary organo-mineral associations. Org Geochem 31:727–731

    Article  CAS  Google Scholar 

  • Schöning I, Kögel-Knabner I (2006) Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forest. Soil Biol Biochem 38:2411–2424

    Article  CAS  Google Scholar 

  • Singer A, Huang PM (1993) Humic acid effect on aluminum interlayering in montmorillonite. Soil Sci Soc Am J 57:271–279

    Article  CAS  Google Scholar 

  • Skjemstad JO (1992) Genesis of Podzols on coastal dunes in Southern Queensland. 3. the role of aluminum organic-complexes in profile development. Aust J Soil Res 30:645–665

    Article  CAS  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, Newman RH (1994) The removal of magnetic materials from surface soils. A solid-state 13C CP/MAS NMR study. Aust J Soil Res 32:1215–1229

    Article  CAS  Google Scholar 

  • Spielvogel S, Prietzel J, Kögel-Knabner I (2008) Soil organic matter stabilisation in acidic forest soils is preferential ans soil type-specific. Eur J Soil Sci 59:674–692

    Article  CAS  Google Scholar 

  • Sombroek SWG, Nachtgräfle FO, Hebel A (1993) Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22(7):417–426

    Google Scholar 

  • Strahm BD, Harrison RB, Terry TA, Harrington TB, Adams AB, Footen PW (2009) Changes in dissolved organic matter with depth suggest the potential for postharvest organic matter retention to increase subsurface soil carbon pools. For Ecol Manage 258:2347–2352

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023. doi:10.1029/2008GB003327

    Article  CAS  Google Scholar 

  • Taylor JP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34:387–401

    Article  CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Trumbore SE, Zheng S (1996) Comparison of fractionation methods for soil organic matter 14C analysis. Radiocarbon 38:219–229

    CAS  Google Scholar 

  • Trumbore S, DaCosta ES, Nepstad DC, DeCamago PB, Martinelli L (2006) Dynamics of fine root carbon in Amazonian tropical ecosystes and the contribution of roots to soil respiration. Global Change Biol 12:217–229

    Article  Google Scholar 

  • Trumbore S (2009) Radiocarbon and soil carbon dynamics. Annu Rev Earth Planet Sci 37:47–66

    Article  CAS  Google Scholar 

  • Van Dam D, Veldkamp E, VanBremen N (1997) Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry 39:343–375

    Article  Google Scholar 

  • Volkhoff B, Cerri C (1987) Carbon isotopic fractionation in subtropical Brazilian grassland soils. Comparison with tropical forest soils. Plant Soil 102:27–31

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmittb K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  CAS  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Rosengren U (2003) Direct estimates of C: N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biol Biochem 35:997–999

    Article  CAS  Google Scholar 

  • Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological and ecological implications of soil biotrubation. Earth Sci Rev 97:257–272

    Article  Google Scholar 

  • Wright AL, Dou F, Hons FM (2007) Crop species and tillage effects on carbon sequestration in subsurface soil. Soil Sci 172:124–131

    Article  CAS  Google Scholar 

  • Xiang S-R, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289

    Article  CAS  Google Scholar 

  • Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG (2006) Permafrost carbon: stock and decomposability of a globally significan carbon pool. Geophysical Research Letters, 33, doi:10.1029/2006GL027484

  • Zimmermann M, Leifeld J, Abiven S, Schmidt MWI, Fuhrer J (2007) Sodium hypochlorite separates an older soil organic matter fraction than acid hydrolysis. Geoderma 139:171–179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Two anonymous reviewers are acknowledged for their constructive comments, which greatly helped to improve the manuscript. Additionally, we thank the organizers of the conference on “Soil organic matter dynamics” in Colorado Springs for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Rumpel.

Additional information

Responsible Editor: M. Francesca Cotrufo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumpel, C., Kögel-Knabner, I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158 (2011). https://doi.org/10.1007/s11104-010-0391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0391-5

Keywords

Navigation