Skip to main content

Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus

Abstract

In a hydroponic setting, we investigated the possible role of phytochelatins (metal-binding peptides) in the lead (Pb) tolerance of vetiver grass (Vetiveria zizanioides L.). Pb was added to the nutrient medium at concentrations ranging from 0 to 1,200 mg L−1. Furthermore, we simulated the effect of soil phosphorus (P) on potentially plant available Pb by culturing vetiver grass in P-rich nutrient media. After 7 days of exposure to Pb, we evaluated the Pb uptake by vetiver grass. Results indicate that vetiver can accumulate Pb up to 3,000 mg kg−1 dry weight in roots with no toxicity. Formation of lead phosphate inhibited Pb uptake by vetiver, suggesting the need for an environmentally safe chelating agent in conjunction with phytoremediation to clean up soils contaminated with lead-based paint. Unambiguous characterization of phytochelatins (PCn) was possible using high pressure liquid chromatography coupled with electrospray ionization mass spectrometry (LC-ESMS). Vetiver shows qualitative and quantitative differences in PCn synthesis between root and shoot. In root tissue from vetiver exposed to 1,200 mg Pb L-1, phytochelatins ranged from PC1 to PC3. Collision-induced dissociation of the parent ion allowed confirmation of each PCn based on the amino acid sequence. Possible Pb-PC1 and Pb2-PC1 complexes were reported in vetiver root at the highest Pb concentration. The data from these experiments show that the most probable mechanism for Pb detoxification in vetiver is by synthesizing PCn and forming Pb–PCn complexes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–c
Fig. 7a,b
Fig. 8

Abbreviations

CID:

Collision induced dissociation

ES-MS:

Electrospray ionization mass spectrometry

GSH:

Glutathione

HPLC:

High-performance liquid chromatography

Pb:

Lead

P:

Phosphorus

PCn :

Phytochelatins

SEM:

Scanning electron microscopy

References

  • Andra SS (2008) Phytoremediation of lead contaminated soils. PhD Dissertation, University of Texas at San Antonio, San Antonio, TX

  • Andra SS, Sarkar D, Datta R, Saminathan S (2006) Lead in soils in paint contaminated residential sites at San Antonio, Texas and Baltimore, Maryland. Bull Environ Contam Toxicol 77:643–650. doi:10.1007/s00128-006-1111-y

    Article  CAS  PubMed  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH (2009) Induction of lead-binding phytochelatins in vetiver grass [Vetiveria zizanioides (L.)]. J Environ Qual 38:868–877

    Google Scholar 

  • ATSDR (2000) Lead toxicity. In: Case studies in environmental medicine, Publication No.: ATSDR-HE-CS-2001-0001. Agency for Toxic Substances and Disease Registry, Atlanta, GA

  • Bach SBH, Sepeda TG, Merrill GN, Walmsley JA (2005) Complexes of dibromo(ethylenediamine) palladium(II) observed from aqueous solutions by electrospray mass spectrometry. J Am Soc Mass Spectrom 16:1461–1469. doi:10.1016/j.jasms.2005.04.011

    Article  CAS  PubMed  Google Scholar 

  • Bach SBH, Green CE, Nagore LI, Sepeda TG, Merrill GN (2007) Complexes of dichloro(ethylenediamine) palladium(II) observed from aqueous solutions by electrospray mass spectrometry. J Am Soc Mass Spectrom 18:769–777. doi:10.1016/j.jasms.2006.12.013

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RS (1994) The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycling 11:41–49. doi:10.1016/0921-3449(94)90077-9

    Article  Google Scholar 

  • Cao X, Ma LQ, Chen M, Singh SP, Harris WG (2002) Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ Sci Technol 36:5296–5304. doi:10.1021/es020697j

    Article  CAS  PubMed  Google Scholar 

  • Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ 217:189–199. doi:10.1016/S0048-9697(98)00195-8

    Article  CAS  Google Scholar 

  • Chekmeneva E, Prohens R, Díaz-Cruz JM, Ariño C, Esteban M (2008) Thermodynamics of Cd2 + and Zn2 + binding by the phytochelatin (γ-Glu-Cys) 4-Gly and its precursor glutathione. Anal Biochem 375:82–89. doi:10.1016/j.ab.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60:1365–1375. doi:10.1016/j.chemosphere.2005.02.035

    Article  CAS  PubMed  Google Scholar 

  • Dalton PA, Smith RJ, Truong PNV (1996) Vetiver grass hedges for erosion control on a cropped flood plain: hedge hydraulics. Agric Water Manage 31:91–104. doi:10.1016/0378-3774(95)01230-3

    Article  Google Scholar 

  • Datta R, Sarkar D (2004) Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals: an overview. Environ Geosci 11:53–63. doi:10.1306/eg.08280303014

    Article  Google Scholar 

  • do Nascimento CWA, Xing BS (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Scientia Agricola 63:299–311

    Google Scholar 

  • El-Zohri MHA, Cabala R, Frank H (2005) Quantification of Phytochelatins in plants by reversed-phase HPLC-ESI-MS-MS. Anal Bioanal Chem 382:1871–1876. doi:10.1007/s00216-005-3331-0

    Article  CAS  PubMed  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003. doi:10.1016/j.chemosphere.2007.01.062

    Article  CAS  PubMed  Google Scholar 

  • Figueroa JAL, Afton S, Wrobel K, Wrobel K, Caruso JA (2007) Analysis of phytochelatins in nopal (Opuntia ficus): a metallomics approach in the soil-plant system. J Anal At Spectrom 22:897–904. doi:10.1039/b703912c

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 18:6838–6842. doi:10.1073/pnas.86.18.6838

    Article  Google Scholar 

  • Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead-induced changes in glutathione and phytochelatin in Hydrilla verticillata (i.f.) Royle. Chemosphere 30:2011–2020. doi:10.1016/0045-6535(95)00075-J

    Article  CAS  Google Scholar 

  • Gustafsson JP (2005) Visual MINTEQ, ver. 2.32. Available at http://www.lwr.kth.se/English/OurSoftware/vminteq/index.htm. Accessed 17 Jan 2009

  • Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465. doi:10.1007/s11738-997-0042-5

    Article  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84. doi:10.1111/j.1469-8137.1996.tb01147.x

    Article  CAS  Google Scholar 

  • Jacobs DE, Clickner RP, Zhou JY, Viet SM, Marker DA, Rogers JW, Zeldin DC, Broene P, Friedman W (2002) The prevalence of lead-based paint hazards in U.S. housing. Environ Health Perspect 110:A599–A606

    CAS  PubMed  Google Scholar 

  • Kopittke PM, Ashera CJ, Menziesa NW (2007) Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environ Pollut 153:548–554. doi:10.1016/j.envpol.2007.09.012

    Article  PubMed  CAS  Google Scholar 

  • Kozka M, Baralkiewicz D, Piechalak A, Tomaszewska B (2006) Determination of thiol compounds in Pisum sativum exposed to lead and cadmium ions by HPLC with post-column derivatization. Chem Anal (Pol) 51:427–437

    CAS  Google Scholar 

  • Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421–430. doi:10.1016/j.chemosphere.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  • Landrigan PJ (1991) Current issues in the epidemiology and toxicology of occupational exposure to lead. Toxicol Ind Health 7:9–14

    CAS  PubMed  Google Scholar 

  • Lee M, Lee KL, Noh EE, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836. doi:10.1104/pp.104.058107

    Article  CAS  PubMed  Google Scholar 

  • Leopold I, Gunther D (1997) Investigation of the binding properties of heavy-metal-peptide complexes in plant cell cultures using HPLC-ICP-MS. Fresenius J Anal Chem 359:364–370. doi:10.1007/s002160050588

    Article  CAS  Google Scholar 

  • Leopold I, Gunther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328. doi:10.1016/S0031-9422(98)00347-1

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039. doi:10.1016/j.chemosphere.2006.03.033

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232. doi:10.1021/es0604919

    Article  CAS  PubMed  Google Scholar 

  • Pichai NMR, Samjiamjiaras R, Thammanoon H (2001) The wonders of a grass, vetiver and its multifold applications. Asian Infrastruct Rev Res 3:1–4

    Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162. doi:10.1016/S0031-9422(02)00067-5

    Article  CAS  PubMed  Google Scholar 

  • Polec-Pawlak K, Ruzik R, Lipiec E (2007) Investigation of Cd(II), Pb(II) and Cu(I) complexation by glutathione and its component amino acids by ESI-MS and size exclusion chromatography coupled to ICP-MS and ESI-MS. Talanta 72:1564–1572. doi:10.1016/j.talanta.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  • Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weeds, worms, and more. Papain's long-lost cousin, Phytochelatin synthase. Plant Physiol 136:2463–2474. doi:10.1104/pp.104.048579

    Article  CAS  PubMed  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680. doi:10.1021/es020675x

    Article  PubMed  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    CAS  PubMed  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  PubMed  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280. doi:10.1016/S0098-8472(02)00002-3

    Article  CAS  Google Scholar 

  • Tang XY, Zhu YG, Chen SB, Tang LL, Chen XP (2004) Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test. Environ Int 30:531–537. doi:10.1016/j.envint.2003.10.008

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2001) U.S. EPA, Lead: identification of dangerous levels of lead; Final Rule. 40CFR745. Fed Regist 66:6763–6765

    Google Scholar 

  • Vacchina V, Chassaigne H, Oven M, Zenk MH, Lobinski R (1999) Characterisation and determination of phytochelatins in plant extracts by electrospray tandem mass spectrometry. Analyst (Lond) 124:1425–1430. doi:10.1039/a905163e

    Article  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea P (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase—blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biochem 275:31451–31459

    CAS  Google Scholar 

  • Wawrzynski A, Kopera E, Wawrzyńska A, Kamińska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57:2173–2182. doi:10.1093/jxb/erj176

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79. doi:10.1104/pp.119.1.73

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1177. doi:10.1104/pp.121.4.1169

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Chen SB, Yang JC (2004) Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environ Int 30:351–356. doi:10.1016/j.envint.2003.07.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research group from the University of Texas at San Antonio appreciates the funding support from the United States Department of Housing and Urban Development for this study. We thank Dr. Mohd Israr, Department of Biology, Western Kentucky University for help with SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syam S. Andra.

Additional information

Responsible Editor: Fangjie J. Zhao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andra, S.S., Datta, R., Sarkar, D. et al. Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326, 171–185 (2010). https://doi.org/10.1007/s11104-009-9992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9992-2

Keywords

  • Hydroponics
  • Lead-based paint
  • Liquid chromatography
  • Mass spectrometry
  • Phytochelatins
  • Phytoremediation
  • Vetiver