Plant and Soil

, Volume 326, Issue 1–2, pp 147–158 | Cite as

Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil

  • Albert Koelbener
  • Lena Ström
  • Peter J. Edwards
  • Harry Olde Venterink
Regular Article


Plants can influence methane emissions from wetland ecosystems by altering its production, consumption and transport in the soil. The aim of this study was to investigate how eight vascular plant species from mesotrophic to eutrophic wetlands vary in their influence on CH4 emissions from peat cores, under low and high N supply. Additionally, we measured the production of low-molecular-weight organic acids (LOA) by the same species (also at low and high N supply), because LOA form a substrate for methanogenesis. There were considerable differences among species in their effects upon rates of CH4 emission. Six of the species (Eriophorum latifolium Hoppe, Potentilla palustris (L.) Scop., Anthoxanthum odoratum (L.) s. str., Carex rostrata Stokes, Carex elata All., Carex acutiformis Ehrh.) increased CH4 emissions up to five times compared to control peat cores without plants, whereas two species (Phalaris arundinacea L., Phragmites australis (Cav.) Trin. ex Steud.) had no effect. There was a weak negative correlation between plant biomass and CH4 emission. N addition had no significant general effect upon CH4 emission. LOA production varied considerably among species, and tended to be highest for species from mesotrophic habitats. LOA production was stimulated by N addition. We conclude that some species from mesotrophic wetlands tend to cause higher CH4 emissions than species from eutrophic wetlands. This pattern, which contradicts what is often mentioned in literature, may be explained by the higher LOA production rates of species adapted to less productive habitats.


Adaptation Biomass Ecological traits Greenhouse gas Nitrogen Organic acids Peat Root exudation Vascular plants 


  1. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159 CrossRefPubMedGoogle Scholar
  2. Bakkenes MD, Zwart de D, Alkemade JRM (2002) MOVE nationaal Model voor de Vegetatie versie 3.2 Achtergronden en analyse van modelvarianten. IVM, Bilthoven - NederlandGoogle Scholar
  3. Bedford BL, Walbridge MR, Aldous A (1999) Patterns of nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169CrossRefGoogle Scholar
  4. Bouchard V, Frey SD, Gilbert JM, Reed SE (2007) Effects of macrophyte functional group richness on emergent freshwater wetland functions. Ecology 88:2903–2914. doi:10.1890/06-1144.1 CrossRefPubMedGoogle Scholar
  5. Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hajek M, Lacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389. doi:10.1073/pnas.0606629104 CrossRefPubMedGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, BerlinGoogle Scholar
  7. BUWAL (2005). Stickstoffhaltige Luftschadstoffe in der Schweiz. Status-Bericht der Eidg. Kommission für Lufthygiene. Schriftenreihe Umwelt Nr. 384. Bundesamt für Umwelt,Wald und Landschaft, BUWAL, Bern. (
  8. Chanton JP, Bauer JE, Glaser PA, Siegel DI, Kelley CA, Tyler SC, Romanowicz EH, Lazrus A (1995) Radiocarbon Evidence for the Substrates Supporting Methane Formation within Northern Minnesota Peatlands. Geochim Cosmochim Acta 59:3663–3668. doi:10.1016/0016-7037(95)00240-Z CrossRefGoogle Scholar
  9. Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK (1997) Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochem Cycles 11:15–27. doi:10.1029/96GB03761 CrossRefGoogle Scholar
  10. Christensen TR, Panikov N, Mastepanov M, Joabsson A, Stewart A, Oquist M, Sommerkorn M, Reynaud S, Svensson B (2003) Biotic controls on CO2 and CH4 exchange in wetlands - a closed environment study. Biogeochemistry 64:337–354. doi:10.1023/A:1024913730848 CrossRefGoogle Scholar
  11. Christensen TR, Johansson TR, Malmer N, Åkerman JH, Friborg T, Crill P, Mastepanov M, Svensson BH (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys Res Lett 31:L04501. doi:10.1029/2003GL018680
  12. Dacey JWH, Drake BG, Klug MJ (1994) Stimulation of Methane Emission by Carbon-Dioxide Enrichment of Marsh Vegetation. Nature 370:47–49. doi:10.1038/370047a0 CrossRefGoogle Scholar
  13. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi:10.1023/A:1020809400075 CrossRefGoogle Scholar
  14. Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2007) Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant Soil 301:123–134. doi:10.1007/s11104-007-9427-x CrossRefGoogle Scholar
  15. Ding WX, Cai ZC, Tsuruta H, Li XP (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51:167–173. doi:10.1016/S0045-6535(02)00804-4 CrossRefPubMedGoogle Scholar
  16. Ding WX, Cai ZC, Tsuruta H (2005) Plant species effects on methane emissions from freshwater marshes. Atmos Environ 39:3199–3207. doi:10.1016/j.atmosenv.2005.02.022 CrossRefGoogle Scholar
  17. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248Google Scholar
  18. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  19. Greenup AL, Bradford MA, McNamara NP, Ineson P, Lee JA (2000) The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland. Plant Soil 227:265–272. doi:10.1023/A:1026573727311 CrossRefGoogle Scholar
  20. Henry F, Nguyen C, Paterson E, Sim A, Robin C (2005) How does nitrogen availability alter rhizodeposition in Lolium multiflorum Lam. during vegetative growth? Plant Soil 269:181–191. doi:10.1007/s11104-004-0490-2 CrossRefGoogle Scholar
  21. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. doi:10.1023/A:1013351617532 CrossRefGoogle Scholar
  22. Hirota M, Tang YH, Hu QW, Hirata S, Kato T, Mo WH, Cao GM, Mariko S (2004) Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol Biochem 36:737–748. doi:10.1016/j.soilbio.2003.12.009 CrossRefGoogle Scholar
  23. IPCC 2007 Climate Change (2007) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  24. Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Glob Change Biol 7:919–932. doi:10.1046/j.1354-1013.2001.00044.x CrossRefGoogle Scholar
  25. Joabsson A, Christensen TR, Wallen B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388. doi:10.1016/S0169-5347(99)01649-3 CrossRefPubMedGoogle Scholar
  26. Johansson T, Malmer N, Crill PM, Friborg T, Åkerman JH, Mastepanov M, Christensen TR (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob Change Biol 12:2352–2369. doi:10.1111/j.1365-2486.2006.01267.x CrossRefGoogle Scholar
  27. Jones DL (1998) Organic acids in the rhizosphere - a critical review. Plant Soil 205:25–44. doi:10.1023/A:1004356007312 CrossRefGoogle Scholar
  28. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480. doi:10.1111/j.1469-8137.2004.01130.x CrossRefGoogle Scholar
  29. Kankaala P, Ojala A, Kaki T (2004) Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry 68:297–311. doi:10.1023/B:BIOG.0000031030.77498.1f CrossRefGoogle Scholar
  30. Laine A, Wilson D, Kiely G, Byrne KA (2007) Methane flux dynamics in an Irish lowland blanket bog. Plant Soil 299:181–193. doi:10.1007/s11104-007-9374-6 CrossRefGoogle Scholar
  31. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: A review. Eur J Soil Biol 37:25–50. doi:10.1016/S1164-5563(01)01067-6 CrossRefGoogle Scholar
  32. Lu Y, Wassmann R, Neue HU, Huang C (1999) Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry 47:203–218Google Scholar
  33. Marschner H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207. doi:10.1016/S0378-4290(97)00131-7 CrossRefGoogle Scholar
  34. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130. doi:10.1023/A:1004380832118 CrossRefGoogle Scholar
  35. Olde Venterink H, Pieterse NM, Belgers JDM, Wassen MJ, De Ruiter PC (2002) N, P and K budgets along nutrient availability and productivity gradients in wetlands. Ecol Appl 12:1010–1026. doi:10.1890/1051-0761(2002)012[1010:NPAKBA]2.0.CO;2 CrossRefGoogle Scholar
  36. R Development Core Team (2006) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  37. Saarnio S, Wittenmayer L, Merbach W (2004) Rhizospheric exudation of Eriophorum vaginatum L. - Potential link to methanogenesis. Plant Soil 267:343–355. doi:10.1007/s11104-005-0140-3 CrossRefGoogle Scholar
  38. Silvola J, Saarnio S, Foot J, Sundh I, Greenup A, Heijmans M, Ekberg A, Mitchell E, van Breemen N (2003) Effects of elevated CO2 and N deposition on CH4 emissions from European mires. Glo Biogeochem Cy 17:1068. doi:10.1029/2002GB001886 CrossRefGoogle Scholar
  39. Steiner AA (1961) A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15:134–154. doi:10.1007/BF01347224 CrossRefGoogle Scholar
  40. Ström L (1997) Root exudation of organic acids: importance to nutrient availability and the calcifuge and calcicole behaviour of plants. Oikos 80:459–466. doi:10.2307/3546618 CrossRefGoogle Scholar
  41. Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9:1185–1192. doi:10.1046/j.1365-2486.2003.00655.x CrossRefGoogle Scholar
  42. Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82. doi:10.1007/s10533-004-6124-1 CrossRefGoogle Scholar
  43. Van der Nat F, Middelburg JJ (1998) Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat Bot 61:95–110. doi:10.1016/S0304-3770(98)00072-2 CrossRefGoogle Scholar
  44. Verville JH, Hobbie SE, Chapin FS, Hooper DU (1998) Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 41:215–235. doi:10.1023/A:1005984701775 CrossRefGoogle Scholar
  45. Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:22775–22785. doi:10.1029/96JD02014 AtmosCrossRefGoogle Scholar
  46. Whiting GJ, Chanton JP (1992) Plant-dependent CH4 emission in a subarctic canadian fen. Global Biogeochem Cycles 6:225–231. doi:10.1029/92GB00710 CrossRefGoogle Scholar
  47. Whiting GJ, Chanton JP (1993) Primary Production Control of Methane Emission from Wetlands. Nature 364:794–795. doi:10.1038/364794a0 CrossRefGoogle Scholar
  48. Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila ES (2008) Rewetting of Cutaway Peatlands: Are We Re-Creating Hot Spots of Methane Emissions? Restor Ecol. doi:10.1111/j.1526-100X.2008.00416.x
  49. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Albert Koelbener
    • 1
  • Lena Ström
    • 2
  • Peter J. Edwards
    • 1
  • Harry Olde Venterink
    • 1
  1. 1.Institute of Integrative Biology, Plant EcologyETH ZurichZurichSwitzerland
  2. 2.Department of Physical Geography and Ecosystems Analysis, GeoBiosphere Science CentreLund UniversityLundSweden

Personalised recommendations