Skip to main content
Log in

Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Excess aluminum (Al) ions and phosphorus (P) deficiency are the key factors that limit plant growth in acid soils. Secretion of organic acids (OA) from roots has been proposed as an Al-resistance mechanism. Nonetheless, the correlation between Al resistance and this mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive genotypes. To elucidate the mechanisms responsible for plant adaptability to acid soils, we studied the secretion of OA from roots of Stylosanthes in response to high-Al and low-P stresses using six different genotypes. Relative root inhibition by 50 µM Al ranged from 25–71% and differed significantly among six Stylosanthes genotypes. Al treatment induced the secretion of citrate from the roots of Stylosanthes seedling in a dose- and time-dependent manner. Moreover, the secretion rate was significantly higher in the Al-resistant genotype. On the other hand, inhibition of Al-induced citrate secretion by phenylisothiocyanate or 9-anthracenecarboxylic acid resulted in an increase in Al content in Stylosanthes root apices. P deficiency also induced citrate secretion from Stylosanthes seedling roots. Furthermore, citrate secretion was much more robust with exposure to both excess-Al and P-deficiency stresses than under either stress alone. Unlike Al-induced citrate secretion, which was rapid, low-P-induced secretion was a slow process, with significant increases in secretion only becoming evident after 6 d of treatment with free phosphate. The lag between treatment with Al and citrate secretion was approximately 4 h. These results suggest that the secretion of citrate is a mechanism for resistance to both excess-Al and low-P stresses in Stylosanthes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Al:

aluminum

P:

phosphorus

OA:

organic acid

9-AC:

anthracene-9-carboxylic acid

PITC:

phenylisothiocyanate

CHM:

cycloheximide

HPLC:

high-performance liquid chromatography

DW:

dry weight

References

  • Cancxado GMA, Loguercio LL, Martins PR, Perentoni SN, Paiva E, Borem A, Lopes MA (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L). Theor Appl Genet 99:747–754. doi:10.1007/s001220051293

    Article  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993a) Aluminum tolerance in wheat (Triticum asetivum L.) I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    CAS  PubMed  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    CAS  PubMed  Google Scholar 

  • Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminum resistance and mineral nutrition. FEBS Lett 581:255–2262. doi:10.1016/j.febslet.2007.03.057

    Article  CAS  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil root interface is enhanced. Plant Soil 70:107–124. doi:10.1007/BF02374754

    Article  CAS  Google Scholar 

  • Genchi G, Spagnoletta A, Santis AD, Stefanizzi L, Palmieri F (1999) Purification and characterization of the reconstitutively active citrate carrier from maize mitochondria. Plant Physiol 120:841–848. doi:10.1104/pp.120.3.841

    Article  CAS  PubMed  Google Scholar 

  • Hoffland E (1992) Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape. Plant Soil 140:279–289. doi:10.1007/BF00010605

    Article  CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Utilization of rock phosphate by rape. Plant Soil 113:155–160. doi:10.1007/BF02280175

    Article  CAS  Google Scholar 

  • Jemo M, Abaidoo RC, Nolte C, Horst WJ (2007) Aluminum resistance of cowpea as affected by phosphorus-deficiency stress. J Plant Physiol 164:442–451. doi:10.1016/j.jplph.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  • Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44(9):901–908. doi:10.1093/pcp/pcg115

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JH, Maron LG, Piñeros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in Aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852. doi:10.1104/pp.107.102335

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195. doi:10.1007/s11104-004-1158-7

    Article  CAS  Google Scholar 

  • Koyama H, Ojima K, Yamaya T (1992) Characteristics of aluminum phosphate adapted carrot cells: uptake and utilization of phosphate. Plant Cell Physiol 33:171–176

    CAS  Google Scholar 

  • Li XF, Ma JF, Hiradate S, Matsumotoa H (2000a) Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays. Physiol Plant 108:152–160. doi:10.1034/j.1399-3054.2000.108002134.x

    Article  CAS  Google Scholar 

  • Li XF, Ma JF, Matsumoto H (2000b) Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol 123:1537–1543. doi:10.1104/pp.123.4.1537

    Article  CAS  PubMed  Google Scholar 

  • Li XF, Ma JF, Matsumoto H (2002) Aluminum-induced secretion of both citrate and malate in rye. Plant Soil 242:235–243. doi:10.1023/A:1016257906153

    Article  CAS  Google Scholar 

  • Liao H, Wan H, Shaff J, Wang XR, Yan XL, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141:674–684. doi:10.1104/pp.105.076497

    Article  CAS  PubMed  Google Scholar 

  • Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H (2006) The BnALMT1 and BnALMT2 genes from Brassica napus L. encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol 142:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Lipton D, Blanchar R, Blevins D (1987) Citrate, malate and succinate concentration in exudates from P sufficient and P stressed Medicago sativa L. seedlings. Plant Physiol 85:315–317. doi:10.1104/pp.85.2.315

    Article  CAS  PubMed  Google Scholar 

  • Lovato MB, Martins PS (1997) Genetic variability in salt tolerance during germination of Stylosanthes humilis H.B.K. and association between salt tolerance and isozymes. Braz J Genet 20:435–441. doi:10.1590/S0100-84551997000300014

    Article  CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390

    CAS  PubMed  Google Scholar 

  • Ma JF, Zheng SJ, Li XF, Matsumotoa H (1997a) A rapid hydroponic screening for aluminum tolerance in barley. Plant Soil 191:133–137. doi:10.1023/A:1004257711952

    Article  CAS  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H (1997b) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol 38:1019–1025

    CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278. doi:10.1016/S1360-1385(01)01961-6

    Article  CAS  PubMed  Google Scholar 

  • Magalhães JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Shaff JE, Piñeros MA (2007) A member of the multidrug and toxic compound extrusion “MATE” family is a major gene that confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161. doi:10.1038/ng2074

    Article  PubMed  CAS  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanisms of aluminum tolerance in snapbeans. Root exudation of citric acid. Plant Physiol 96:737–743. doi:10.1104/pp.96.3.737

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382. doi:10.1007/s004250050572

    Article  CAS  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212:829–834. doi:10.1007/s004250000444

    Article  CAS  PubMed  Google Scholar 

  • Partridge I (1996) Protecting stylos from anthracnose. Rural Res 171:29–32

    Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795. doi:10.1007/BF01106775

    Article  CAS  Google Scholar 

  • Pellet DM, Papernik L, Kochian L (1996) Multiple aluminum-resistance mechanisms in wheat. Roles of root apical phosphate and malate exudation. Plant Physiol 103:591–597

    Google Scholar 

  • Piñeros M, Magalhaes J, Carvalho-Alves VM, Kochian LV (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 29:1194–1206. doi:10.1104/pp.002295

    Article  CAS  Google Scholar 

  • Piñeros MV, Shaff JE, Manslank HS, Carvalho AVM, Kochian LV (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol 137:231–241. doi:10.1104/pp.104.047357

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Ditomaso JM, Kochina LV (1993) Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446. doi:10.1093/jxb/44.2.437

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995a) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110. doi:10.1007/BF00193223

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995b) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust J Plant Physiol 22:531–536

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653. doi:10.1111/j.1365-313X.2003.01991.x

    Article  CAS  PubMed  Google Scholar 

  • Silva IR, Smyth TJ, Raper CD, Carter TE, Rufty TW (2001) Differential aluminum tolerance in soybean: an evaluation of the role of organic acids. Physiol Plant 112:200–210. doi:10.1034/j.1399-3054.2001.1120208.x

    Article  CAS  PubMed  Google Scholar 

  • Sivaguru M, Baluŝka F, Volkmann D, Felle HH, Horst WJ (1999) Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082. doi:10.1104/pp.119.3.1073

    Article  CAS  PubMed  Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Raymet GE, Probert ME (eds) Plant-soil interactions at low pH: principles and management. Kluwer Academic Publishers, Dordrecht, pp 5–19

    Google Scholar 

  • Wang BL, Shen JB, Zhang WH, Zhang FS, Neumann G (2007) Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytol 176:581–589. doi:10.1111/j.1469-8137.2007.02206.x

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Patiño GM, Chaves AL, Mayer JE, Rao IM (2001) The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiol 125:1473–1484. doi:10.1104/pp.125.3.1473

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Zheng SJ, He YF, You JF, Zhang L, Yu XH (2006) Comparative studies on the effect of a protein-synthesis inhibitor on aluminum-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots. Plant Cell Environ 29:240–246. doi:10.1111/j.1365-3040.2005.01416.x

    Article  CAS  PubMed  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat. Al-induced special secretion of oxalic acid from root tips. Plant Physiol 117:745–751. doi:10.1104/pp.117.3.745

    Article  Google Scholar 

  • Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138:297–303. doi:10.1104/pp.105.059667

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the National Basic Research Program of China (grant No. 2007CB108901), the National Natural Science Foundation of China (grant No. 30360048 and No. 30771287) and Research Fund for the Doctoral Program of Higher Education of China (grant No. 200805930008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Feng Li.

Additional information

Responsible Editor: Hans Lambers.

Zuo, Ling and Li contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X.F., Zuo, F.H., Ling, G.Z. et al. Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes . Plant Soil 325, 219–229 (2009). https://doi.org/10.1007/s11104-009-9971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9971-7

Keywords

Navigation