Skip to main content

Advertisement

Log in

Effects of below ground CO2 emissions on plant and microbial communities

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Below-ground carbon dioxide (CO2) emissions occur naturally at CO2 springs, but the risk of occurrence at other sites will increase as geologic CO2 storage is implemented to help mitigate climate change. This investigation examines the effects of elevated soil CO2 concentrations from such emissions on vegetation biomass and microbial community biomass, respiration and carbon utilisation in temperate grassland. Soil CO2 concentrations was increased by release of concentrated CO2 gas from a point source 0.6 m below the surface of the soil as a low-level leak (1 l min−1) for 10 weeks. The gassing resulted in reduced vegetation above- and below-ground biomass over time. No significant changes in microbial biomass or carbon utilisation were observed, but a trend towards reduced microbial respiration was apparent. This research provides a first step towards understanding the potential ecological risks of geologic carbon storage, the development of biological leak detection methods, and improved understanding of the effects of elevated soil CO2 concentrations on biological communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2

Similar content being viewed by others

Notes

  1. For the 10 week sampling, soil was too wet to be sieved. Soil was broken up as much as possible and roots were removed by hand, allowing 30 minutes per sample.

References

  • Anderson JPE, Domsch KH (1978) Mineralisation of bacteria and fungi in chloroform fumigated soils. Soil Biol Biochem 10:207–213. doi:10.1016/0038-0717(78)90098-6

    Article  CAS  Google Scholar 

  • Bachu S (2000) Sequestration of CO2 in geologic media: criteria and approaches for site selection in response to climate change. Energy Convers Manage 41:953–970. doi:10.1016/S0196-8904(99)00149-1

    Article  CAS  Google Scholar 

  • Bergfeld D, Evans WC, Howle JF, Farrar CD (2006) Carbon dioxide emissions from vegetation-kill zones around the resurgent dome of Long Valley caldera, eastern California, USA. J Volcanol Geotherm Res 152:140–156. doi:10.1016/j.jvolgeores.2005.11.003

    Article  CAS  Google Scholar 

  • Cook AD, Tissue DT, Roberts SW, Oechel WC (1998) Effects of long-term elevated [CO2] from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. Plant Cell Environ 21:417–425. doi:10.1046/j.1365-3040.1998.00285.x

    Article  CAS  Google Scholar 

  • Crawley MJ (2005) Statistics: An introduction using R. John Wiley & Sons, Chichester, England

    Google Scholar 

  • Cotrufo MF, Ineson P (2000) Does elevated atmospheric CO2 concentrations affect wood decomposition? Plant Soil 224:51–57

    Article  CAS  Google Scholar 

  • Cotrufo MF, Raschi A, Lanini M, Ineson P (1999) Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO2 Mediterranean ecosystem. Funct Ecol 13:343–351

    Article  Google Scholar 

  • Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures in eastern Amazonia. Biogeochemistry 48:53–69. doi:10.1023/A:1006204113917

    Article  CAS  Google Scholar 

  • Gahrooee FR (1998) Impacts of elevated atmospheric CO2 on litter quality, litter decomposability, and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem. Glob Change Biol 4:667–677. doi:10.1046/j.1365-2486.1998.00187.x

    Article  Google Scholar 

  • Garland JL, Mills AL (1991) Classification of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon source utilization. Appl Environ Microb 57:2351–2359

    Google Scholar 

  • Gerlach TM, Douglas MP, McGee KA, Kessler R (2001) Soil efflux and total emission rates of magmatic CO2 at the Horseshoe Lake tree kill, Mammoth Mountain, California, 1995–1997. Chem Geol 177:101–116. doi:10.1016/S0009-2541(00)00385-5

    Article  CAS  Google Scholar 

  • Grayston SJ, Campbell CD, Lutze JL, Gifford RM (1998) Impact of elevated CO2 on the metabolic diversity of microbial communities in N-limited grass swards. Plant Soil 203:289–300. doi:10.1023/A:1004315012337

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Ebblewhite N, Paterson E, Killham K (1998) Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations, with observation on wheat rhizosphere. Soil Biol Biochem 30:315–321. doi:10.1016/S0038-0717(97)00133-8

    Article  CAS  Google Scholar 

  • Heinrich JJ, Herzog HJ, Reiner DM (2003) Environmental assessment of geologic storage of CO2. Laboratory for Energy and the Environment, MIT, presented at the Second National Conference on Carbon Sequestration, Washington DC, May 5–8.

  • Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191. doi:10.1038/35051576

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson DS, Brookes PC, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol Biochem 36:5–7. doi:10.1016/j.soilbio.2003.10.002

    Article  CAS  Google Scholar 

  • Kersters I, van Vooren L, Verschuere L, Wouters A, Mergaert J, Swings J, Vorstraete W (1997) Utility of the Biolog system for the characterisation of heterotrophic microbial communities. Syst Appl Microbiol 20:439–447

    Google Scholar 

  • Lipson DA, Wilson RF, Oechel WC (2005) Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a Chaparral ecosystem. Appl Environ Microbiol 71:8573–8580. doi:10.1128/AEM.71.12.8573-8580.2005

    Article  CAS  PubMed  Google Scholar 

  • Lipson DA, Blair M, Barron-Gafford G, Grieve K, Murthy R (2006) Relationships between microbial community structure and soil processes under elevated atmospheric CO2. Microb Ecol 51:302–314. doi:10.1007/s00248-006-9032-1

    Article  PubMed  Google Scholar 

  • Macek I, Pfanz H, Francetic V, Batic F, Vodnik D (2005) Root respiration response to high CO2 concentrations in plants from natural CO2 springs. Environ Exp Bot 54:90–99. doi:10.1016/j.envexpbot.2004.06.003

    Article  CAS  Google Scholar 

  • Miglietta F, Berrarini I, Raschi A, Korner C, Vaccari FP (1998) Isotope discrimination and photosynthesis of vegetation growing in the Bossoleto CO2 spring. Chemosphere 36:771–776. doi:10.1016/S0045-6535(97)10122-9

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165. doi:10.1007/s004420000615

    Article  Google Scholar 

  • Pfanz H, Vodnik D, Whittman C, Aschan G, Batic F, Turk B, Macek I (2007) Photosynthetic performance (CO2 compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. Environ Exp Bot 61:41–48. doi:10.1016/j.envexpbot.2007.02.008

    Article  CAS  Google Scholar 

  • Rogie JD, Kerrick DM, Sorey ML, Chiodini G, Galloway DL (2001) Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planet Sci Lett 188:535–541. doi:10.1016/S0012-821X(01)00344-2

    Article  CAS  Google Scholar 

  • Sowerby A, Blum H, Gray TRG, Ball AS (2000a) The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol Biochem 32:1359–1366. doi:10.1016/S0038-0717(00)00045-6

    Article  CAS  Google Scholar 

  • Sowerby A, Ball AS, Gray TGR, Newton PCD, Clark H (2000b) Elevated atmospheric CO2 concentration from a natural soda spring affects the initial mineralization rates of naturally senesced C3 and C4 leaf litter. Soil Biol Biochem 32:1323–1327. doi:10.1016/S0038-0717(00)00029-8

    Article  CAS  Google Scholar 

  • Stenberg B, Johansson M, Pell M, Sjodahl-Svensson K, Stenstrom J, Torstensson L (1998) Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biology & Biochemistry 30:393–402

    Article  CAS  Google Scholar 

  • Trueman RJ, Gonzalez-Meler MA (2005) Accelerated belowground C cycling in a managed agriforest ecosystem exposed to elevated carbon dioxide concentrations. Glob Change Biol 11:1258–1271. doi:10.1111/j.1365-2486.2005.00984.x

    Article  Google Scholar 

  • Van Gardingen PR, Grace J, Harkness DD, Miglietta F, Raschi A (1995) Carbon dioxide emissions at an Italian mineral spring: measurements of average CO2 concentration and air temperature. Agric For Meteorol 73:17–27. doi:10.1016/0168-1923(94)02176-K

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot (Lond) 79(Supp. A):3–20. doi:10.1006/anbo.1996.0295

    CAS  Google Scholar 

  • Vodnik D, Kastelec D, Pfanz H, Macek I, Turk B (2006) Small-scale spatial variation in soil CO2 concentration in a natural carbon dioxide spring and some related plant responses. Geoderma 133:309–319. doi:10.1016/j.geoderma.2005.07.016

    Article  CAS  Google Scholar 

  • Wardle DA, Parkinson D (1990) Interactions between microclimatic variables and the soil microbial biomass. Biol Fertil Soils 9:273–280. doi:10.1007/BF00336239

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Prof. Jeremy Colls, Dr. Karon Smith, and the rest of the ASGARD team for the use of the site and technical support; Ms Manal Al-Troubasi and Professor Michael Steven collected the bar-holing data; Dr. Tom Reader and Dr. Markus Eichhorn for statistical support; and Dr. Helen West for assistance in the laboratory and with analysis of Biolog plates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Sjögersten.

Additional information

Responsible Editor: Juha Mikola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, S., Sjögersten, S. Effects of below ground CO2 emissions on plant and microbial communities. Plant Soil 325, 197–205 (2009). https://doi.org/10.1007/s11104-009-9969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9969-1

Keywords

Navigation